IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i3p843-858.html
   My bibliography  Save this article

Optimal Water Quality Management Considering Spatial and Temporal Variations in a Tidal River

Author

Listed:
  • Huapeng Qin
  • Jingjing Jiang
  • Guangtao Fu
  • Ying Zheng

Abstract

There is an increasing need to establish wastewater treatment facilities for improving water quality of heavily polluted rivers in rapidly urbanizing areas. Optimization models are widely used to determine the pollutant removal levels at different pollution sources, with the aim of minimizing the wastewater treatment cost and satisfying certain water quality criteria. Water quality is usually evaluated in a prescribed space or time point. Thus it cannot reflect the overall status of a tidal river that has significant spatio-temporal variations. In this paper, new spatio-temporal water quality criteria, which consider the water quality violation against specified water quality standards during the whole simulation period of time for the entire river simulated, are proposed and then applied to optimization of a wastewater treatment system in Shenzhen, China. The results indicate that the optimization based on the proposed criteria facilitates an improved performance of wastewater treatment systems in terms of water quality along the whole river during a long time period, instead of just in a prescribed space or time point. Furthermore, use of the new criteria derives a better Pareto front of cost and water quality in terms of convergence and coverage compared with the conventional criteria and thus they are recommended as the water quality criteria to measure spatial and temporal variation in a tidal river for wastewater treatment system planning. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Huapeng Qin & Jingjing Jiang & Guangtao Fu & Ying Zheng, 2013. "Optimal Water Quality Management Considering Spatial and Temporal Variations in a Tidal River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 843-858, February.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:3:p:843-858
    DOI: 10.1007/s11269-012-0218-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0218-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0218-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ajit Singh & S. Ghosh & Pankaj Sharma, 2007. "Water quality management of a stretch of river Yamuna: An interactive fuzzy multi-objective approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 515-532, February.
    2. M. Saadatpour & A. Afshar, 2007. "Waste load allocation modeling with fuzzy goals; simulation-optimization approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1207-1224, July.
    3. Ayman Awadallah & Mohsen Yousry, 2012. "Identifying Homogeneous Water Quality Regions in the Nile River Using Multivariate Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2039-2055, May.
    4. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    5. H. Zhu & G. Huang & P. Guo & X. Qin, 2009. "A Fuzzy Robust Nonlinear Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2913-2940, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenhuan Liu & Haiyan Yang, 2018. "The Impacts of Spatiotemporal Landscape Changes on Water Quality in Shenzhen, China," IJERPH, MDPI, vol. 15(5), pages 1-14, May.
    2. Bulent Tutmez & Mehmet Yuceer, 2013. "Regression Kriging Analysis for Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3307-3318, July.
    3. Tao Jiang & Ming Zhong & Ying-jie Cao & Long-jian Zou & Bo Lin & Ai-ping Zhu, 2016. "Simulation of Water Quality under Different Reservoir Regulation Scenarios in the Tidal River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3593-3607, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping-Feng Pai & Fong-Chuan Lee, 2010. "A Rough Set Based Model in Water Quality Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2405-2418, September.
    2. Maryam Zavareh & Viviana Maggioni, 2018. "Application of Rough Set Theory to Water Quality Analysis: A Case Study," Data, MDPI, vol. 3(4), pages 1-15, November.
    3. M. Islam & Rehan Sadiq & Manuel Rodriguez & Homayoun Najjaran & Alex Francisque & Mina Hoorfar, 2013. "Evaluating Water Quality Failure Potential in Water Distribution Systems: A Fuzzy-TOPSIS-OWA-based Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2195-2216, May.
    4. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    5. George Tsakiris & Mike Spiliotis, 2011. "Planning Against Long Term Water Scarcity: A Fuzzy Multicriteria Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1103-1129, March.
    6. Javier Paredes-Arquiola & Joaquín Andreu-Álvarez & Miguel Martín-Monerris & Abel Solera, 2010. "Water Quantity and Quality Models Applied to the Jucar River Basin, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2759-2779, September.
    7. Zong Woo Geem & Jin-Hong Kim, 2016. "Sustainable Optimization for Wastewater Treatment System Using PSF-HS," Sustainability, MDPI, vol. 8(4), pages 1-13, March.
    8. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    9. Li, Y.P. & Huang, G.H. & Zhang, N. & Nie, S.L., 2011. "An inexact-stochastic with recourse model for developing regional economic-ecological sustainability under uncertainty," Ecological Modelling, Elsevier, vol. 222(2), pages 370-379.
    10. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    11. Li, Y.P. & Huang, G.H. & Nie, S.L. & Chen, X., 2011. "A robust modeling approach for regional water management under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 98(10), pages 1577-1588, August.
    12. Adamu Mustapha & Balarabe Usman Getso, 2014. "Sources and Pathway of Environmental Pollutants into Surface Water Resources: A Review," Journal of Environments, Asian Online Journal Publishing Group, vol. 1(2), pages 54-59.
    13. Feifei Dong & Yong Liu & Han Su & Zhongyao Liang & Rui Zou & Huaicheng Guo, 2016. "Uncertainty-Based Multi-Objective Decision Making with Hierarchical Reliability Analysis Under Water Resources and Environmental Constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 805-822, January.
    14. E. Hernandez & Venkatesh Uddameri, 2010. "Selecting Agricultural Best Management Practices for Water Conservation and Quality Improvements Using Atanassov’s Intuitionistic Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4589-4612, December.
    15. Yao Ji & Guo Huang & Wei Sun, 2015. "Nonpoint-Source Water Quality Management Under Uncertainty Through an Inexact Double-Sided Chance-Constrained Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3079-3094, July.
    16. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    17. Sun, Wei & Huang, Guo H. & Lv, Ying & Li, Gongchen, 2013. "Inexact joint-probabilistic chance-constrained programming with left-hand-side randomness: An application to solid waste management," European Journal of Operational Research, Elsevier, vol. 228(1), pages 217-225.
    18. R. Srinivas & Ajit Pratap Singh & Rishikesh Sharma, 2017. "A Scenario Based Impact Assessment of Trace Metals on Ecosystem of River Ganges Using Multivariate Analysis Coupled with Fuzzy Decision-Making Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4165-4185, October.
    19. Feifei Dong & Yong Liu & Han Su & Zhongyao Liang & Rui Zou & Huaicheng Guo, 2016. "Uncertainty-Based Multi-Objective Decision Making with Hierarchical Reliability Analysis Under Water Resources and Environmental Constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 805-822, January.
    20. Jian Sha & Zeli Li & Dennis Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:3:p:843-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.