IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2024i2p27-527d1380085.html
   My bibliography  Save this article

Evaluation of Distillery Fractions in Direct Methanol Fuel Cells and Screening of Reaction Products

Author

Listed:
  • Giuseppe Montevecchi

    (Department of Life Sciences (Agro-Food Science Area), BIOGEST—SITEIA Interdepartmental Centre, University of Modena and Reggio Emilia, Piazzale Europa 1A, 42124 Reggio Emilia, Italy)

  • Maria Cannio

    (Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy
    Resoh Solutions SRL, Via Pietro Guardini 476/N, 41124 Modena, Italy)

  • Umberto Cancelli

    (Department of Life Sciences (Agro-Food Science Area), BIOGEST—SITEIA Interdepartmental Centre, University of Modena and Reggio Emilia, Piazzale Europa 1A, 42124 Reggio Emilia, Italy
    Department of Food and Drug Sciences, University of Parma, Parco Area delle Scienze 27A, 43100 Parma, Italy)

  • Andrea Antonelli

    (Department of Life Sciences (Agro-Food Science Area), BIOGEST—SITEIA Interdepartmental Centre, University of Modena and Reggio Emilia, Piazzale Europa 1A, 42124 Reggio Emilia, Italy)

  • Marcello Romagnoli

    (Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy)

Abstract

Fuel cells represent an appealing avenue for harnessing eco-friendly energy. While their fuel supply traditionally stems from water electrolysis, an environmentally conscious approach also involves utilizing low-weight alcohols like methanol and ethanol. These alcohols, concentrated from sustainable sources within the enological by-product distillation process, offer a noteworthy contribution to the circular economy. This study delved into evaluating the efficacy of distillery fractions in powering methanol fuel cells. Beyond their energy-generation potential, the performed GC-MS analysis unveiled appreciable quantities of acetic acid resulting from the partial oxidation of ethanol. This revelation opens the door to intriguing possibilities, including the recovery and repurposing of novel compounds such as short-chain fatty acids (predominantly acetic acid), ketones, and aldehydes—establishing a link between sustainable energy production and the emergence of valuable by-product applications.

Suggested Citation

  • Giuseppe Montevecchi & Maria Cannio & Umberto Cancelli & Andrea Antonelli & Marcello Romagnoli, 2024. "Evaluation of Distillery Fractions in Direct Methanol Fuel Cells and Screening of Reaction Products," Clean Technol., MDPI, vol. 6(2), pages 1-15, April.
  • Handle: RePEc:gam:jcltec:v:6:y:2024:i:2:p:27-527:d:1380085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/2/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/2/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sánchez-Monreal, Juan & García-Salaberri, Pablo A. & Vera, Marcos, 2019. "A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).
    2. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    4. Manuel Raul Pelaez-Samaniego & Juan L. Espinoza & José Jara-Alvear & Pablo Arias-Reyes & Fernando Maldonado-Arias & Patricia Recalde-Galindo & Pablo Rosero & Tsai Garcia-Perez, 2020. "Potential and Impacts of Cogeneration in Tropical Climate Countries: Ecuador as a Case Study," Energies, MDPI, vol. 13(20), pages 1-26, October.
    5. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    6. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production," Energy, Elsevier, vol. 117(P2), pages 540-549.
    7. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).
    8. Milão, Raquel de Freitas D. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2021. "Second Law analysis of large-scale sugarcane-ethanol biorefineries with alternative distillation schemes: Bioenergy carbon capture scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Qian Kang & Tianwei Tan, 2016. "Exergy and CO 2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production," Sustainability, MDPI, vol. 8(1), pages 1-11, January.
    10. Milão, Raquel de Freitas Dias & Carminati, Hudson B. & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Thermodynamic, financial and resource assessments of a large-scale sugarcane-biorefinery: Prelude of full bioenergy carbon capture and storage scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Dantas, Guilherme A. & Legey, Luiz F.L. & Mazzone, Antonella, 2013. "Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 356-364.
    12. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    13. Fukushima, Nilton Asao & Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2019. "Energy analysis of the ethanol industry considering vinasse concentration and incineration," Renewable Energy, Elsevier, vol. 142(C), pages 96-109.
    14. Bessa, Larissa C.B.A. & Ferreira, M.C. & Batista, Eduardo A.C. & Meirelles, Antonio J.A., 2013. "Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation," Energy, Elsevier, vol. 63(C), pages 1-9.
    15. Jonker, J.G.G. & van der Hilst, F. & Junginger, H.M. & Cavalett, O. & Chagas, M.F. & Faaij, A.P.C., 2015. "Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies," Applied Energy, Elsevier, vol. 147(C), pages 593-610.
    16. Palacios-Bereche, Milagros Cecilia & Palacios-Bereche, Reynaldo & Nebra, Silvia Azucena, 2020. "Comparison through energy, exergy and economic analyses of two alternatives for the energy exploitation of vinasse," Energy, Elsevier, vol. 197(C).
    17. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    18. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    19. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    20. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:2:p:27-527:d:1380085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.