IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v1y2019i1p14-223d255605.html
   My bibliography  Save this article

Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines

Author

Listed:
  • Palanisamy Mohan Kumar

    (Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Engineering Drive 3, Singapore 117587, Singapore)

  • Krishnamoorthi Sivalingam

    (School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Rd, Singapore 59949, Singapore)

  • Teik-Cheng Lim

    (School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Rd, Singapore 59949, Singapore)

  • Seeram Ramakrishna

    (Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Engineering Drive 3, Singapore 117587, Singapore)

  • He Wei

    (Singapore Institute of Manufacturing Technology, Surface Technology group, A*STAR, Fusionopolis way 2, Innovis, Singapore 138634, Singapore)

Abstract

The objective of the current review is to present the development of a large vertical axis wind turbine (VAWT) since its naissance to its current applications. The turbines are critically reviewed in terms of performance, blade configuration, tower design, and mode of failure. The early VAWTs mostly failed due to metal fatigue since the composites were not developed. Revisiting those configurations could yield insight into the future development of VAWT. The challenges faced by horizontal axis wind turbine (HAWT), especially in the megawatt capacity, renewed interest in large scale VAWT. VAWT provides a solution for some of the immediate challenges faced by HAWT in the offshore environment in terms of reliability, maintenance, and cost. The current rate of research and development on VAWT could lead to potential and economical alternatives for HAWT. The current summary on VAWT is envisioned to be an information hub about the growth of the Darrieus turbine from the kW capacity to megawatt scale.

Suggested Citation

  • Palanisamy Mohan Kumar & Krishnamoorthi Sivalingam & Teik-Cheng Lim & Seeram Ramakrishna & He Wei, 2019. "Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines," Clean Technol., MDPI, vol. 1(1), pages 1-19, August.
  • Handle: RePEc:gam:jcltec:v:1:y:2019:i:1:p:14-223:d:255605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/1/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/1/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    2. Eriksson, S. & Bernhoff, H. & Bergkvist, M., 2012. "Design of a unique direct driven PM generator adapted for a telecom tower wind turbine," Renewable Energy, Elsevier, vol. 44(C), pages 453-456.
    3. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noman, Abdullah Al & Tasneem, Zinat & Sahed, Md. Fahad & Muyeen, S.M. & Das, Sajal K. & Alam, Firoz, 2022. "Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Marcin Augustyn & Filip Lisowski, 2023. "Experimental and Numerical Studies on a Single Coherent Blade of a Vertical Axis Carousel Wind Rotor," Energies, MDPI, vol. 16(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Möllerström, Erik & Gipe, Paul & Beurskens, Jos & Ottermo, Fredric, 2019. "A historical review of vertical axis wind turbines rated 100 kW and above," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 1-13.
    3. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    4. Anders Goude & Morgan Rossander, 2017. "Force Measurements on a VAWT Blade in Parked Conditions," Energies, MDPI, vol. 10(12), pages 1-15, November.
    5. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    6. Chong, W.T. & Gwani, M. & Shamshirband, S. & Muzammil, W.K. & Tan, C.J. & Fazlizan, A. & Poh, S.C. & Petković, Dalibor & Wong, K.H., 2016. "Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine," Energy, Elsevier, vol. 102(C), pages 630-636.
    7. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    8. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    9. Krzysztof Kołodziejczyk & Radosław Ptak, 2022. "Numerical Investigations of the Vertical Axis Wind Turbine with Guide Vane," Energies, MDPI, vol. 15(22), pages 1-14, November.
    10. Poguluri, Sunny Kumar & Lee, Hyebin & Bae, Yoon Hyeok, 2021. "An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine," Energy, Elsevier, vol. 219(C).
    11. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).
    12. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.
    13. Shonhiwa, Chipo & Makaka, Golden, 2016. "Concentrator Augmented Wind Turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1415-1418.
    14. Heagle, A.L.B. & Naterer, G.F. & Pope, K., 2011. "Small wind turbine energy policies for residential and small business usage in Ontario, Canada," Energy Policy, Elsevier, vol. 39(4), pages 1988-1999, April.
    15. Goude, Anders & Bülow, Fredrik, 2013. "Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations," Renewable Energy, Elsevier, vol. 59(C), pages 193-201.
    16. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    17. Reza Norouztabar & Seyed Soheil Mousavi Ajarostaghi & Seyed Sina Mousavi & Payam Nejat & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "On the Performance of a Modified Triple Stack Blade Savonius Wind Turbine as a Function of Geometrical Parameters," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    18. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    19. Mohamed, M.H., 2013. "Impacts of solidity and hybrid system in small wind turbines performance," Energy, Elsevier, vol. 57(C), pages 495-504.
    20. Batista, N.C. & Melício, R. & Mendes, V.M.F. & Calderón, M. & Ramiro, A., 2015. "On a self-start Darrieus wind turbine: Blade design and field tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 508-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:1:y:2019:i:1:p:14-223:d:255605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.