IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i12p193-d188740.html
   My bibliography  Save this article

Design and Implementation of a Rainfed Matrix for Cotton

Author

Listed:
  • James Mahan

    (Cropping Systems Research Laboratory, 3810 4th Street, Lubbock, TX 79415, USA)

  • Paxton Payton

    (Cropping Systems Research Laboratory, 3810 4th Street, Lubbock, TX 79415, USA)

Abstract

Global production of agricultural products must continue to increase if shortages are to be avoided. While irrigated production is substantial since water available for both current and future production is limited, rainfed production will become increasingly important. In-season weather variability results in instability in rainfed production and in order to gain information on the mechanisms involved and their potential mitigation, it is important to monitor production over a range of possible environmental scenarios. We designed and implemented a rain matrix experimental approach for cotton based on a series of sequential plantings coupled with a rain-simulation protocol. The rain matrix in two years produced 56 growing environments with rain and thermal variability and 44 yield:environment comparisons. The yield:rain relationship was not strong ( R 2 = 0.35) Analysis of heat units over the matrix indicated (1) heat units varied with planting date and (2) heat units were sufficient to achieve maturity. Plantings reached maturity with <1250 heat units and reached maturity before a lethal freeze. The rain matrix design increased the number of yield:environment comparisons in a single year and though it is subject to undefined thermal interactions, may prove useful in understanding rainfed cotton production.

Suggested Citation

  • James Mahan & Paxton Payton, 2018. "Design and Implementation of a Rainfed Matrix for Cotton," Agriculture, MDPI, vol. 8(12), pages 1-22, December.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:12:p:193-:d:188740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/12/193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/12/193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Mahan & Paxton Payton, 2017. "An Agrocentric Analysis of Regional Rain Patterns as They Relate to a Rained Cotton Cropping System on the Southern High Plains of Texas," Agriculture, MDPI, vol. 7(11), pages 1-17, November.
    2. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    3. Marten, Gerald G., 1988. "Productivity, stability, sustainability, equitability and autonomy as properties for agroecosystem assessment," Agricultural Systems, Elsevier, vol. 26(4), pages 291-316.
    4. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongqi He & Dan C. Olk & Haile Tewolde & Hailin Zhang & Mark Shankle, 2019. "Carbohydrate and Amino Acid Profiles of Cotton Plant Biomass Products," Agriculture, MDPI, vol. 10(1), pages 1-14, December.
    2. Andrew Young & James Mahan & William Dodge & Paxton Payton, 2020. "BLOB-Based AOMs: A Method for the Extraction of Crop Data from Aerial Images of Cotton," Agriculture, MDPI, vol. 10(1), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    2. Žiga Malek & Peter H. Verburg, 2018. "Adaptation of land management in the Mediterranean under scenarios of irrigation water use and availability," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 821-837, August.
    3. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    4. Desale Kidane Asmamaw & Pieter Janssens & Mekete Dessie & Seifu A. Tilahun & Enyew Adgo & Jan Nyssen & Kristine Walraevens & Derbew Fentie & Wim M. Cornelis, 2021. "Soil and Irrigation Water Management: Farmer’s Practice, Insight, and Major Constraints in Upper Blue Nile Basin, Ethiopia," Agriculture, MDPI, vol. 11(5), pages 1-19, April.
    5. Sebastian Kloss & Raji Pushpalatha & Kefasi Kamoyo & Niels Schütze, 2012. "Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 997-1014, March.
    6. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    7. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    8. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    9. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    10. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    11. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    12. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    13. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    14. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    15. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    16. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    17. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    18. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    19. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    20. Wang, Wendi & Straffelini, Eugenio & Tarolli, Paolo, 2023. "Steep-slope viticulture: The effectiveness of micro-water storage in improving the resilience to weather extremes," Agricultural Water Management, Elsevier, vol. 286(C).

    More about this item

    Keywords

    cotton; rainfed; heat unit;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:12:p:193-:d:188740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.