IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v7y2017i3p21-d92519.html
   My bibliography  Save this article

Suppression of CH4 Emission by Rice Straw Removal and Application of Bio‐Ethanol Production Residue in a Paddy Field in Akita, Japan

Author

Listed:
  • Fumiaki Takakai

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

  • Jota Ichikawa

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

  • Masato Ogawa

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

  • Saki Ogaya

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

  • Kentaro Yasuda

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

  • Yukiya Kobayashi

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

  • Takashi Sato

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

  • Yoshihiro Kaneta

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

  • Ken‐ichiro Nagahama

    (Faculty of Bioresource Sciences, Akita Prefectural University, 241‐438 Aza Kaidobata‐Nishi, Shimoshinjo Nakano, Akita 010‐0195, Japan)

Abstract

To elucidate the effects of rice straw removal and rice straw‐based bio‐ethanol production residue application on rice growth and methane (CH4) emission from a paddy field, a lysimeter experiment with three treatments (application of rice straw after harvesting (the rice‐straw plot); removal of rice straw and the application of bio‐ethanol production residue (the Et‐residue plot); removal of rice straw (the no‐application plot)) was conducted over three years. Though the grain yields in the Et‐residue and no‐application plots tended to be slightly higher than that in the ricestraw plot, there were no significant differences among the plots (530–546 g∙m−2). Suppression of CH4 emission by the treatments was found clearly in the early part of the growing season. The total CH4 emissions during the rice‐growing season (unit: g∙C∙m−2∙period−1) followed the order of the noapplication plot (11.9) < the Et‐residue plot (14.6) < the rice‐straw plot (25.4), and a significant difference was found between the no‐application and rice‐straw plots. Consequently, bio‐ethanol production from rice straw and a following application of its residue to paddy fields is considered to be a promising technology which can obtain new sustainable energy and suppress CH4 emission without any inhibition on rice growth.

Suggested Citation

  • Fumiaki Takakai & Jota Ichikawa & Masato Ogawa & Saki Ogaya & Kentaro Yasuda & Yukiya Kobayashi & Takashi Sato & Yoshihiro Kaneta & Ken‐ichiro Nagahama, 2017. "Suppression of CH4 Emission by Rice Straw Removal and Application of Bio‐Ethanol Production Residue in a Paddy Field in Akita, Japan," Agriculture, MDPI, vol. 7(3), pages 1-16, March.
  • Handle: RePEc:gam:jagris:v:7:y:2017:i:3:p:21-:d:92519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/7/3/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/7/3/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    2. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fumiaki Takakai & Takemi Kikuchi & Tomomi Sato & Masato Takeda & Kensuke Sato & Shinpei Nakagawa & Kazuhiro Kon & Takashi Sato & Yoshihiro Kaneta, 2017. "Changes in the Nitrogen Budget and Soil Nitrogen in a Field with Paddy–Upland Rotation with Different Histories of Manure Application," Agriculture, MDPI, vol. 7(5), pages 1-20, April.
    2. Fumiaki Takakai & Shinpei Nakagawa & Kensuke Sato & Kazuhiro Kon & Takashi Sato & Yoshihiro Kaneta, 2017. "Net Greenhouse Gas Budget and Soil Carbon Storage in a Field with Paddy–Upland Rotation with Different History of Manure Application," Agriculture, MDPI, vol. 7(6), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    3. Canabarro, Nicholas I. & Alessio, Cláudia & Foletto, Edson L. & Kuhn, Raquel C. & Priamo, Wagner L. & Mazutti, Marcio A., 2017. "Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor," Renewable Energy, Elsevier, vol. 102(PA), pages 9-14.
    4. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    5. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    6. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    7. Jingying Fu & Jinshuang Du & Gang Lin & Dong Jiang, 2021. "Analysis of Yield Potential and Regional Distribution for Bioethanol in China," Energies, MDPI, vol. 14(15), pages 1-16, July.
    8. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    9. Hafid, Halimatun Saadiah & Rahman, Nor’ Aini Abdul & Shah, Umi Kalsom Md & Baharuddin, Azhari Samsu & Ariff, Arbakariya B., 2017. "Feasibility of using kitchen waste as future substrate for bioethanol production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 671-686.
    10. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Osagie A. Osadolor & Patrik R. Lennartsson & Mohammad J. Taherzadeh, 2014. "Introducing Textiles as Material of Construction of Ethanol Bioreactors," Energies, MDPI, vol. 7(11), pages 1-13, November.
    12. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    13. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    14. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    15. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    16. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    17. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    18. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    19. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.
    20. Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue & Thorin, Eva & Dotzauer, Erik, 2012. "The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study," Applied Energy, Elsevier, vol. 92(C), pages 791-799.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:7:y:2017:i:3:p:21-:d:92519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.