IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i9p1008-d1650219.html
   My bibliography  Save this article

The Effects of Multi-Scenario Land Use Change on the Water Conservation in the Agro-Pastoral Ecotone of Northern China: A Case Study of Bashang Region, Zhangjiakou City

Author

Listed:
  • Ruiyang Zhao

    (Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    School of Information Engineering, China University of Geoscience, Beijing 100083, China)

  • Haiming Kan

    (Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Hengkang Xu

    (Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Chao Chen

    (Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Guofang Zhang

    (Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Zhuo Pang

    (Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Weiwei Zhang

    (Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

Abstract

Water resource management is crucial for sustainable agricultural and ecological development, particularly in regions with complex land-use patterns and sensitive eco-systems. The Bashang region of Zhangjiakou city, located in the agro-pastoral ecotone of northern China, is an ecologically fragile area that is currently undergoing significant land use and climate changes. Despite the importance of understanding the interplay between land use, climate change, and water conservation, few studies have comprehensively evaluated their combined effects on regional water resources. This study addresses this gap by investigating the spatiotemporal changes in the water yield (WY) and water conservation capacity (WCC) of the Bashang region under different land use and climate scenarios for the year 2035. This research employs the FLUS model to predict the future land use and the InVEST model to estimate the WY and WCC under a natural development scenario (NDS), an agricultural production scenario (APS), an ecological protection scenario (EPS), and a land planning scenario (LPS). The results reveal that the WCC is primarily influenced by precipitation, land use, and the topography. This study finds that scenarios which focus on ecological protection and land use optimization, such as the EPS and LPS, significantly enhance the water conservation capacity of the study region Notably, the LPS scenario, which limits urban expansion and increases the amount of ecological land, provides the best balance between the water yield and conservation. The findings highlight the need for integrated approaches to land use and water resource management, particularly in agro-pastoral transitional zones. The unique contribution of this research lies in its comprehensive modeling approach, which combines land use, climate data, and water resource analysis, and which provides valuable insights for sustainable land and water management strategies.

Suggested Citation

  • Ruiyang Zhao & Haiming Kan & Hengkang Xu & Chao Chen & Guofang Zhang & Zhuo Pang & Weiwei Zhang, 2025. "The Effects of Multi-Scenario Land Use Change on the Water Conservation in the Agro-Pastoral Ecotone of Northern China: A Case Study of Bashang Region, Zhangjiakou City," Agriculture, MDPI, vol. 15(9), pages 1-29, May.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:9:p:1008-:d:1650219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/9/1008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/9/1008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tianshi Pan & Lijun Zuo & Zengxiang Zhang & Xiaoli Zhao & Feifei Sun & Zijuan Zhu & Yingchun Liu, 2020. "Impact of Land Use Change on Water Conservation: A Case Study of Zhangjiakou in Yongding River," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    2. Karina Winkler & Richard Fuchs & Mark Rounsevell & Martin Herold, 2021. "Global land use changes are four times greater than previously estimated," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Lili Zhao & Yan-Jun Shen & Mengzhu Liu & Yixuan Wang & Yali Li & Hongwei Pei, 2023. "The Impacts of Land Use Changes on Water Yield and Water Conservation Services in Zhangjiakou, Beijing’s Upstream Watershed, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maysoon A A Osman & Elfatih M Abdel-Rahman & Joshua Orungo Onono & Lydia A Olaka & Muna M Elhag & Marian Adan & Henri E Z Tonnang, 2023. "Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA- artificial neural network model," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-28, July.
    2. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Kangkang Gu & Luyao Ma & Jian Xu & Haoran Yu & Xinmu Zhang, 2023. "Spatiotemporal Evolution Characteristics and Driving Factors of Water Conservation Service in Jiangxi Province from 2001 to 2020," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    4. Tuan Nguyen Tran, 2024. "Comparing the process of converting land use purposes between socio-economic regions in Vietnam from 2007 to 2020," Environmental & Socio-economic Studies, Sciendo, vol. 12(3), pages 51-62.
    5. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    6. Zhu, Zichun & Fu, Congsheng & Wu, Huawu & Wu, Haohao & Zhang, Haixia & Cao, Yang & Xia, Ye, 2023. "What influences does grazing bring about to stream nutrient fluxes in alpine meadows?," Agricultural Water Management, Elsevier, vol. 289(C).
    7. Nucci, A. & Angiolini, C. & Manolaki, P. & Vogiatzakis, I.N., 2022. "An integrated approach to support a river ecological network: A case study from the Mediterranean," Land Use Policy, Elsevier, vol. 119(C).
    8. Qing Zhang & Yanping Wang & Xuan Liu, 2024. "Risk of introduction and establishment of alien vertebrate species in transboundary neighboring areas," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yongchao Duan & Min Luo & Xiufeng Guo & Peng Cai & Fu Li, 2021. "Study on the Relationship between Snowmelt Runoff for Different Latitudes and Vegetation Growth Based on an Improved SWAT Model in Xinjiang, China," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    10. Nick ten Caat & Martin Tenpierik & Andy van den Dobbelsteen, 2022. "Towards a More Sustainable Urban Food System—Carbon Emissions Assessment of a Diet Transition with the FEWprint Platform," Sustainability, MDPI, vol. 14(3), pages 1-29, February.
    11. Haoshan Wei & Yongqiang Zhang & Qi Huang & Francis H. S. Chiew & Jinkai Luan & Jun Xia & Changming Liu, 2024. "Direct vegetation response to recent CO2 rise shows limited effect on global streamflow," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Simon P. K. Bowring & Wei Li & Florent Mouillot & Thais M. Rosan & Philippe Ciais, 2024. "Road fragment edges enhance wildfire incidence and intensity, while suppressing global burned area," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Dasgupta,Susmita & Lall,Somik V. & Wheeler,David R., 2021. "Urban CO2 Emissions : A Global Analysis with New Satellite Data," Policy Research Working Paper Series 9845, The World Bank.
    14. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    15. Park,Hogeun & Selod,Harris & Murray,Siobhan & Chellaraj,Gnanaraj, 2022. "Geography, Institutions, and Global Cropland Dynamics," Policy Research Working Paper Series 10078, The World Bank.
    16. Damien Beillouin & Marc Corbeels & Julien Demenois & David Berre & Annie Boyer & Abigail Fallot & Frédéric Feder & Rémi Cardinael, 2023. "A global meta-analysis of soil organic carbon in the Anthropocene," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Dasgupta,Susmita & Lall,Somik V. & Wheeler,David, 2023. "Scalable Tracking of CO2 Emissions : A Global Analysis with Satellite Data," Policy Research Working Paper Series 10297, The World Bank.
    18. Hetemäki, Lauri & Nasi, Robert & Palahi, Marc & Cerutti, Paolo & Mausch, Kai, 2021. "The Future of Wood - towards circular bioeconomy," SocArXiv huax7, Center for Open Science.
    19. Franz Kevin Geronimo & Nash Jett Reyes & Hyeseon Choi & Lee-Hyung Kim, 2021. "Implications of Microbial Community to the Overall Performance of Tree-Box Filter Treating Parking Lot Runoff," Sustainability, MDPI, vol. 13(19), pages 1-12, September.
    20. Bowen Butchart, Dominique & Christie-Whitehead, Karen Michelle & Roberts, Geoff & Eisner, Rowan & Reinke, Hayden & Munidasa, Sineka & Macdonald, Ainslie & Higgins, Vaughan & Doran-Browne, Natalie & Ha, 2025. "Advancing quantification of Australia's beef cattle and sheep emissions accounts - Carbon sinks and emissions hot spots battle it out en route to net zero," Agricultural Systems, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:9:p:1008-:d:1650219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.