IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i6p612-d1611515.html
   My bibliography  Save this article

Quantifying the Impact of Fertilizer-Induced Reactive Nitrogen Emissions on Surface Ozone Formation in China: Insights from FEST-C* and CMAQ Simulations

Author

Listed:
  • Mengduo Zhang

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Xuelei Zhang

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    These authors contributed equally to this work.)

  • Chao Gao

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Hongmei Zhao

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Shichun Zhang

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Shengjin Xie

    (State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China)

  • Aijun Xiu

    (State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

Abstract

The emissions of reactive nitrogen (Nr) from cropland links the pedosphere and atmosphere, playing a crucial role in the Earth’s nitrogen cycle while significantly impacting regional climate change, air quality, and human health. Among various Nr species, nitrogen oxide (NO) and nitrous acid (HONO) have garnered increasing attention as critical precursors to surface ozone (O 3 ) formation due to their participation in photochemical reactions. While most studies focus on Nr emissions from soils, the specific contributions of cropland Nr emissions considering planting activities to regional O 3 pollution remain insufficiently investigated. This study applied the enhanced process-based agroecological model (FEST-C*) coupled with the air quality (CMAQ) model to quantify cropland Nr emissions and assess their contributions to regional O 3 formation across China in June 2020. The simulated results indicated that the fertilizer-induced total Nr emission was estimated at 1.26 Tg in China, with NO emissions accounting for 0.66 Tg and HONO emissions for 0.60 Tg. North China was identified as a hotspot for cropland Nr emissions, contributing 43% of the national total. The peak emissions of cropland NO and HONO occurred in June, with emissions of 169 and 192 Gg, respectively. Cropland Nr emissions contributed approximately 8% to the national monthly mean MDA8 O 3 concentration, with localized enhancements exceeding 9% in agricultural hotspots in summer. North China experienced the largest MDA8 O 3 increase, reaching 11.71 μg m −3 , primarily due to intensive fertilizer application and favorable climatic conditions. Conversely, reductions in nighttime hourly O 3 concentrations were observed in southern North China and northern Southeast China due to the rapid titration of O 3 via NO. In this study, the contributions of cropland Nr emissions to MDA8 O 3 concentrations across different regions of China have been further constrained. Incorporating cropland Nr emissions into the CMAQ model improved simulation accuracy and reduced mean biases in MDA8 O 3 predictions. This study offers a detailed quantification of the contribution of cropland Nr emissions in regional ozone formation across China and highlights the critical need to address cropland NO and HONO emissions in air quality management strategies.

Suggested Citation

  • Mengduo Zhang & Xuelei Zhang & Chao Gao & Hongmei Zhao & Shichun Zhang & Shengjin Xie & Aijun Xiu, 2025. "Quantifying the Impact of Fertilizer-Induced Reactive Nitrogen Emissions on Surface Ozone Formation in China: Insights from FEST-C* and CMAQ Simulations," Agriculture, MDPI, vol. 15(6), pages 1-20, March.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:6:p:612-:d:1611515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/6/612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/6/612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heena Panchasara & Nahidul Hoque Samrat & Nahina Islam, 2021. "Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
    2. Cui, Xiaohui & Guo, Liyue & Li, Caihong & Liu, Meizhen & Wu, Guanglei & Jiang, Gaoming, 2021. "The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    2. Shanshan Zhao & Mingsen Qin & Xia Yang & Wenke Bai & Yunfeng Yao & Junqiang Wang, 2023. "Freeze–Thaw Cycles Have More of an Effect on Greenhouse Gas Fluxes than Soil Water Content on the Eastern Edge of the Qinghai–Tibet Plateau," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    3. Le Tran Thanh Liem & Yukihiro Tashiro & Pham Van Trong Tinh & Kenji Sakai, 2022. "Reduction in Greenhouse Gas Emission from Seedless Lime Cultivation Using Organic Fertilizer in a Province in Vietnam Mekong Delta Region," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    4. Muhammad Salim Butt & Hifsa Shahid & Farhan Ahmed Butt & Iqra Farhat & Munazza Sadaf & Muhammad Raashid & Ahmad Taha, 2022. "Power Generation Analysis of Terrestrial Ultraviolet-Assisted Solid Oxide Electrolyzer Cell," Energies, MDPI, vol. 15(3), pages 1-14, January.
    5. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    6. Fadhlur Rahim Azmi & Suhaiza Zailani & Mastura Roni, 2023. "A Review of the Critical Gaps in the Food Security Literature: Addressing Key Issues for Sustainable Development," Information Management and Business Review, AMH International, vol. 15(2), pages 35-46.
    7. Kamila Nowosad & Jan Bocianowski & Farzad Kianersi & Alireza Pour-Aboughadareh, 2023. "Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize ( Zea mays L.)," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    8. Christine Cleghorn & Ingrid Mulder & Alex Macmillan & Anja Mizdrak & Jonathan Drew & Nhung Nghiem & Tony Blakely & Cliona Ni Mhurchu, 2022. "Can a Greenhouse Gas Emissions Tax on Food also Be Healthy and Equitable? A Systemised Review and Modelling Study from Aotearoa New Zealand," IJERPH, MDPI, vol. 19(8), pages 1-15, April.
    9. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    10. Putri Aliah Mohd Hidzir & Shafinar Ismail & Sharifah Heryati Syed Nor & Aqilah Nadiah Md Sahiq, 2023. "Financial Well-Being of Micro-Entrepreneurs: A Proposed Conceptual Framework," Information Management and Business Review, AMH International, vol. 15(3), pages 418-428.
    11. Shang, Delei & Geissler, Bernhard & Mew, Michael & Satalkina, Liliya & Zenk, Lukas & Tulsidas, Harikrishnan & Barker, Lee & El-Yahyaoui, Adil & Hussein, Ahmed & Taha, Mohamed & Zheng, Yanhua & Wang, M, 2021. "Unconventional uranium in China's phosphate rock: Review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Huang, Zhenyu & Yan, Ziyan & Tan, Minghong & Xu, Xiaofan & Yang, Xue, 2024. "Impact of cropland spatial shift on carbon footprint of agricultural inputs for grain production in China, 1990–2018," Energy Policy, Elsevier, vol. 195(C).
    13. Yumeng Sun & Chun Yang & Mingli Wang & Xuezhen Xiong & Xuefen Long, 2022. "Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    14. Murillo Vetroni Barros & Rômulo Henrique Gomes Jesus & Bruno Silva Ribeiro & Cassiano Moro Piekarski, 2023. "Going in Circles: Key Aspects for Circular Economy Contributions to Agro-industrial Cooperatives," Circular Economy and Sustainability, Springer, vol. 3(2), pages 861-880, June.
    15. Shilong Xi & Xiaohui Wang & Kejun Lin, 2025. "The Impact of Carbon Emissions Trading Pilot Policies on High-Quality Agricultural Development: An Empirical Assessment Using Double Machine Learning," Sustainability, MDPI, vol. 17(5), pages 1-28, February.
    16. Nahina Islam & Md Mamunur Rashid & Faezeh Pasandideh & Biplob Ray & Steven Moore & Rajan Kadel, 2021. "A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    17. Shivangi Jha & Sonil Nanda & Oscar Zapata & Bishnu Acharya & Ajay K. Dalai, 2024. "A Review of Systems Thinking Perspectives on Sustainability in Bioresource Waste Management and Circular Economy," Sustainability, MDPI, vol. 16(23), pages 1-20, November.
    18. Tianyu Qin & Lan Wang & Jianshe Zhao & Gaifang Zhou & Caihong Li & Liyue Guo & Gaoming Jiang, 2022. "Effects of Straw Mulching Thickness on the Soil Health in a Temperate Organic Vineyard," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    19. Daiva Makutėnienė & Dalia Perkumienė & Valdemaras Makutėnas, 2022. "Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States," Energies, MDPI, vol. 15(3), pages 1-26, February.
    20. Rolandas Drejeris & Martynas Rusteika, 2022. "New Approach to the Public Authorities’ Activities Development in the Crop Insurance System: Lithuanian Case," Agriculture, MDPI, vol. 12(8), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:6:p:612-:d:1611515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.