IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i3p238-d1573890.html
   My bibliography  Save this article

Soil Enzyme Activities and Microbial Carbon Pump Promote Carbon Storage by Influencing Bacterial Communities Under Nitrogen-Rich Conditions in Tea Plantation

Author

Listed:
  • Qi Shu

    (Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)

  • Shenghua Gao

    (Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)

  • Xinmiao Liu

    (Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)

  • Zengwang Yao

    (College of Forestry, Shandong Agricultural University, Taian 271018, China)

  • Hailong Wu

    (Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)

  • Lianghua Qi

    (Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China)

  • Xudong Zhang

    (Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)

Abstract

Carbon–nitrogen (C-N) coupling is a fundamental concept in ecosystem ecology. Long-term excessive fertilization in tea plantations has caused soil C-N imbalance, leading to ecological issues. Understanding soil C-N coupling under nitrogen loading is essential for sustainable management, yet the mechanisms remain unclear. This study examined C-N coupling in tea plantation soils under five fertilization regimes: no fertilization, chemical fertilizer, chemical + organic cake fertilizer, chemical + microbial fertilizer, and chemical + biochar. Fertilization mainly increased particulate organic carbon (POC) and inorganic nitrogen, driven by changes in bacterial community composition and function. Mixed fertilization treatments enhanced the association between bacterial communities and soil properties, increasing ecological complexity without altering overall trends. Fungal communities had a minor influence on soil C-N dynamics. Microbial necromass carbon (MNC) and microbial carbon pump (MCP) efficacy, representing long-term carbon storage potential, showed minimal responses to short-term fertilization. However, the microbial necromass accumulation coefficient (NAC) was nitrogen-sensitive, indicating short-term responses. PLS-PM analysis revealed consistent C-N coupling across the treatments, where soil nitrogen influenced carbon through enzyme activity and MCP, while bacterial communities directly affected carbon storage. These findings provide insights for precise soil C-N management and sustainable tea plantation practices under climate change.

Suggested Citation

  • Qi Shu & Shenghua Gao & Xinmiao Liu & Zengwang Yao & Hailong Wu & Lianghua Qi & Xudong Zhang, 2025. "Soil Enzyme Activities and Microbial Carbon Pump Promote Carbon Storage by Influencing Bacterial Communities Under Nitrogen-Rich Conditions in Tea Plantation," Agriculture, MDPI, vol. 15(3), pages 1-22, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:238-:d:1573890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/3/238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/3/238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    2. Sébastien Fontaine & Sébastien Barot & Pierre Barré & Nadia Bdioui & Bruno Mary & Cornelia Rumpel, 2007. "Stability of organic carbon in deep soil layers controlled by fresh carbon supply," Nature, Nature, vol. 450(7167), pages 277-280, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Wei Fan & Jingchao Yuan & Jinggui Wu & Hongguang Cai, 2023. "Effects of Straw Maize on the Bacterial Community and Carbon Stability at Different Soil Depths," Agriculture, MDPI, vol. 13(7), pages 1-15, June.
    3. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Salih Demirkaya & Abdurrahman Ay & Coşkun Gülser & Rıdvan Kızılkaya, 2025. "Enhancing Clay Soil Productivity with Fresh and Aged Biochar: A Two-Year Field Study on Soil Quality and Wheat Yield," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    5. Xiaochang Wu & Huayong Zhang & Zhongyu Wang & Wang Tian & Zhao Liu, 2024. "Patterns of Soil Stoichiometry Driven by Mixed Tree Species Proportions in Boreal Forest," Sustainability, MDPI, vol. 16(19), pages 1-13, October.
    6. Virna Estefania Moran-Rodas & Verena Preusse & Christine Wachendorf, 2022. "Agricultural Management Practices and Decision-Making in View of Soil Organic Matter in the Urbanizing Region of Bangalore," Sustainability, MDPI, vol. 14(10), pages 1-27, May.
    7. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    8. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    9. Meiting Li & Keqin Wang & Xiaoyi Ma & Mingsi Fan & Biyu Li & Yali Song, 2025. "Relationship Between Soil Aggregate Stability and Associated Carbon and Nitrogen Changes Under Different Ecological Construction Measures in the Karst Region of Southwest China," Agriculture, MDPI, vol. 15(2), pages 1-23, January.
    10. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    11. Héctor Iván Bedolla-Rivera & María de la Luz Xochilt Negrete-Rodríguez & Miriam del Rocío Medina-Herrera & Francisco Paúl Gámez-Vázquez & Dioselina Álvarez-Bernal & Midory Samaniego-Hernández & Alfred, 2020. "Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    12. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    14. Carine Naba & Hiroshi Ishidaira & Jun Magome & Kazuyoshi Souma, 2024. "Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    15. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    16. Yongkang Wang & Junfeng Dai & Fan Jiang & Zupeng Wan & Shuaipu Zhang, 2025. "Coupled Effects of Water Depth, Vegetation, and Soil Properties on Soil Organic Carbon Components in the Huixian Wetland of the Li River Basin," Land, MDPI, vol. 14(3), pages 1-20, March.
    17. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    18. José Manuel Rato Nunes & António Bonito & Luis Loures & José Gama & Antonio López-Piñeiro & David Peña & Ángel Albarrán, 2017. "Effects of the European Union Agricultural and Environmental Policies in the Sustainability of Most Common Mediterranean Soils," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    19. Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
    20. Xiaoyan Ren & Xinyi Zhang & Liqun Cai & Jun Wu, 2025. "Responses of Soil Aggregate Stability and SOC to Different Tillage Modes and Straw Input Level," Sustainability, MDPI, vol. 17(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:238-:d:1573890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.