IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i17p1826-d1734208.html
   My bibliography  Save this article

A Spatiotemporal Assessment of Cropland System Health in Xinjiang with an Improved VOR Framework

Author

Listed:
  • Jiaxin Hao

    (College of Science, Shihezi University, Shihezi 832000, China)

  • Liqiang Shen

    (College of Science, Shihezi University, Shihezi 832000, China)

  • Hui Zhan

    (College of Science, Shihezi University, Shihezi 832000, China)

  • Guang Yang

    (College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
    Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, China)

  • Huanhuan Chen

    (College of Science, Shihezi University, Shihezi 832000, China
    Key Laboratory of Oasis Town and Basin System Ecological Corps, Shihezi 832000, China)

  • Yuejian Wang

    (College of Science, Shihezi University, Shihezi 832000, China
    Key Laboratory of Oasis Town and Basin System Ecological Corps, Shihezi 832000, China)

Abstract

Accurately identifying and comprehensively managing the health of cropland systems is crucial for maintaining national food security. In this study, a more suitable framework for evaluating the health status of cropland systems in arid areas was constructed, and a systematic diagnosis of the health status of a cropland system in Xinjiang was conducted by increasing cropland stress and extending the VOR model to the VOR-S framework. The principal driving factors and spatiotemporal heterogeneity of cropland system health were investigated by using geographic detectors and GTWR models. The results showed the following: (1) From 2001 to 2023, the health level of the cropland system in Xinjiang fluctuated and increased. The proportion of areas with higher health levels (health levels I and II) in the cropland system increased from 45.84% in 2001 to 50.80% in 2023. The overall environment of the cropland system thus improved. (2) From 2001 to 2023, in terms of stress on the cropland system in Xinjiang, the overall level of HAI (human activity intensity) exhibited an upward trend, while the overall SEI (soil erosion intensity) significantly decreased, and WEI (wind erosion intensity) remained relatively stable. (3) The explanatory power of driving factors for cropland system health is ranked by order of magnitude as follows: annual precipitation (0.641) > annual average temperature (0.630) > population density (0.619) > nighttime lighting (0.446) > slope (0.313) > altitude (0.267). In addition, the combination of climate and human activity factors plays a dominant role in the spatial differentiation of cropland system health. The research results can provide scientific reference for cropland protection policies in arid areas.

Suggested Citation

  • Jiaxin Hao & Liqiang Shen & Hui Zhan & Guang Yang & Huanhuan Chen & Yuejian Wang, 2025. "A Spatiotemporal Assessment of Cropland System Health in Xinjiang with an Improved VOR Framework," Agriculture, MDPI, vol. 15(17), pages 1-23, August.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:17:p:1826-:d:1734208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/17/1826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/17/1826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandratos, Nikos & Bruinsma, Jelle, "undated". "World agriculture towards 2030/2050: the 2012 revision," ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    2. Xiangbin Kong, 2014. "China must protect high-quality arable land," Nature, Nature, vol. 506(7486), pages 7-7, February.
    3. Thorsøe, Martin & Noe, Egon & Maye, Damian & Vigani, Mauro & Kirwan, James & Chiswell, Hannah & Grivins, Mikelis & Adamsone-Fiskovica, Anda & Tisenkopfs, Talis & Tsakalou, Emi & Aubert, Pierre-Marie &, 2020. "Responding to change: Farming system resilience in a liberalized and volatile European dairy market," Land Use Policy, Elsevier, vol. 99(C).
    4. Fengqiang Wu & Caijian Mo & Xiaojun Dai & Hongmei Li, 2022. "Spatial Analysis of Cultivated Land Productivity, Site Condition and Cultivated Land Health at County Scale," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    5. Rui Zhao & Kening Wu, 2021. "Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China," Agriculture, MDPI, vol. 11(7), pages 1-27, June.
    6. Pengnan Xiao & Yuan Zhang & Peng Qian & Mengyao Lu & Zupeng Yu & Jie Xu & Chong Zhao & Huilin Qian, 2022. "Spatiotemporal Characteristics, Decoupling Effect and Driving Factors of Carbon Emission from Cultivated Land Utilization in Hubei Province," IJERPH, MDPI, vol. 19(15), pages 1-32, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xigui Li & Qing Wu & Yujie Liu, 2023. "Spatiotemporal Changes of Cultivated Land System Health Based on PSR-VOR Model—A Case Study of the Two Lake Plains, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    2. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    3. Achoja, Felix Odemero & Enujeke, Emmanuel Chukudinife & Ogisi, Oraye Dicta & Overehirha, Rebecca Tega, 2020. "Multinomial Regression Analysis of Yam (Dioscorea Spp.) Consumers' Preferences and Varietal Diversification Pattern in Nigeria," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 10(02), January.
    4. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    5. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    6. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    7. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    8. repec:ags:ijag24:346816 is not listed on IDEAS
    9. Chengqiang Li & Junxiao Wang & Liang Ge & Yujie Zhou & Shenglu Zhou, 2022. "Optimization of Sample Construction Based on NDVI for Cultivated Land Quality Prediction," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    10. Mounir Amdaoud, 2019. "Ressources naturelles, innovation et développement économique : vers une nouvelle approche," CEPN Working Papers 2019-06, Centre d'Economie de l'Université de Paris Nord.
    11. Yi Yao & Agnès Ducharne & Benjamin I. Cook & Steven J. Hertog & Kjetil Schanke Aas & Pedro F. Arboleda-Obando & Jonathan Buzan & Jeanne Colin & Maya Costantini & Bertrand Decharme & David M. Lawrence , 2025. "Impacts of irrigation expansion on moist-heat stress based on IRRMIP results," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    12. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    13. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    14. Bircol, Guilherme Augusto Carminato & Souza, Marcelo Pereira de & Fontes, Aurélio Teodoro & Chiarello, Adriano Garcia & Ranieri, Victor Eduardo Lima, 2018. "Planning by the rules: A fair chance for the environment in a land-use conflict area," Land Use Policy, Elsevier, vol. 76(C), pages 103-112.
    15. Maurer, Rainer, 2023. "Comparing the effect of different agricultural land-use systems on biodiversity," Land Use Policy, Elsevier, vol. 134(C).
    16. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    17. Cong Xu & Jie Pu & Bo Wen & Min Xia, 2021. "Potential Ecological Risks of Heavy Metals in Agricultural Soil Alongside Highways and Their Relationship with Landscape," Agriculture, MDPI, vol. 11(8), pages 1-13, August.
    18. Lukáš Čechura & Zdeňka Žáková Kroupová & Irena Benešová, 2021. "Productivity and Efficiency in European Milk Production: Can We Observe the Effects of Abolishing Milk Quotas?," Agriculture, MDPI, vol. 11(9), pages 1-21, August.
    19. Cheng, Mingyang & Yansui Liu, & Zhou, Yang, 2019. "Measuring the symbiotic development of rural housing and industry: A case study of Fuping County in the Taihang Mountains in China," Land Use Policy, Elsevier, vol. 82(C), pages 307-316.
    20. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    21. Yanbing Wang & Simon Hug & Judith Irek & Robert Finger, 2025. "Product differentiation, quality, and milk price stability: The case of the Swiss cheese market," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 47(1), pages 416-435, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:17:p:1826-:d:1734208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.