Author
Listed:
- Xiaolong Chen
(Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)
- Hongfeng Zhang
(Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)
- Cora Un In Wong
(Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices.
Suggested Citation
Xiaolong Chen & Hongfeng Zhang & Cora Un In Wong, 2025.
"Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS,"
Agriculture, MDPI, vol. 15(15), pages 1-27, July.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:15:p:1627-:d:1710955
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:15:p:1627-:d:1710955. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.