IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1227-d1671897.html
   My bibliography  Save this article

Evaluation of Temporal Changes in Evapotranspiration and Crop Water Requirements in the Context of Changing Climate: Case Study of the Northern Bucharest–Ilfov Development Region, Romania

Author

Listed:
  • Florentina Iuliana Mincu

    (National Institute of Hydrology and Water Management, 97 București-Ploiești Street, 013686 Bucharest, Romania)

  • Daniel Constantin Diaconu

    (Interdisciplinary Center for Advanced Studies (CISA-ICUB), University of Bucharest, 90-92 Panduri Road, Sector 5, 050663 Bucharest, Romania
    Faculty of Geography, University of Bucharest, 1 Nicolae Bălcescu Boulevard, 010041 Bucharest, Romania)

  • Dana Maria Oprea Constantin

    (Faculty of Geography, University of Bucharest, 1 Nicolae Bălcescu Boulevard, 010041 Bucharest, Romania)

  • Daniel Peptenatu

    (Interdisciplinary Center for Advanced Studies (CISA-ICUB), University of Bucharest, 90-92 Panduri Road, Sector 5, 050663 Bucharest, Romania)

Abstract

Climate change has a complex impact on the agricultural crop system, with knowledge of the processes being necessary to assist decisions that guide the adaptation of society to profound structural changes. This study aims to highlight the main changes generated by the modification of climatic parameters (increasing air temperature, humidity and precipitation and decreasing wind speed) on agricultural crops in a region with important changes in its economic profile due to urban extension and land use modification. The analysis methodology is based on the Cropwat software to highlight the temporal variability of crop evapotranspiration, effective rain and water requirements for different crops—strawberry, sunflower and pea—and the possibility of using other types of crops with higher yield and lower water needs. The methodology used highlights this fact, showing that major changes are needed in the choice of crop schemes and future technological processes in the current context of climate change. The current results of the study, conducted over a period of 30 years (1991–2020), showed that the climatic, land use and economic changes in the study area have led to a decrease in evapotranspiration and crop water requirements due to the amounts of precipitation that can provide for the water needs of strawberry, sunflower and pea crops. The irrigation requirements during the analysis period 1991–2020 varied from <10 mm/year to 120 mm/year for strawberry crops, and can exceed 300 mm/year for sunflower and pea crops, having higher values in years with a precipitation deficit (effective rain less than 100 mm). Analyzing the irrigation requirements during the vegetation growing seasons shows that for pea and strawberry the trend is decreasing, but without a significance level. Only for the sunflower crop is an increasing trend recorded in the initial and late stages. The results obtained provide a methodological framework as well as concrete information for decision-makers in the field of agriculture who must build adaptation mechanisms for climate challenges.

Suggested Citation

  • Florentina Iuliana Mincu & Daniel Constantin Diaconu & Dana Maria Oprea Constantin & Daniel Peptenatu, 2025. "Evaluation of Temporal Changes in Evapotranspiration and Crop Water Requirements in the Context of Changing Climate: Case Study of the Northern Bucharest–Ilfov Development Region, Romania," Agriculture, MDPI, vol. 15(11), pages 1-18, June.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1227-:d:1671897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sofia Fuente & Eleanor Jennings & John D. Lenters & Piet Verburg & Georgiy Kirillin & Tom Shatwell & Raoul-Marie Couture & Marianne Côté & C. Love Råman Vinnå & R. Iestyn Woolway, 2024. "Increasing warm-season evaporation rates across European lakes under climate change," Climatic Change, Springer, vol. 177(12), pages 1-18, December.
    2. Daniel Constantin Diaconu & Daniel Peptenatu & Andreea Karina Gruia & Alexandra Grecu & Andrei Rafael Gruia & Manuel Fabian Gruia & Cristian Constantin Drăghici & Aurel Mihail Băloi & Mihai Bogdan Ale, 2025. "The Impact of Urban Expansion on Land Use in Emerging Territorial Systems: Case Study Bucharest-Ilfov, Romania," Agriculture, MDPI, vol. 15(4), pages 1-15, February.
    3. Nahina Islam & Md Mamunur Rashid & Faezeh Pasandideh & Biplob Ray & Steven Moore & Rajan Kadel, 2021. "A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    4. Martin Jung & Markus Reichstein & Philippe Ciais & Sonia I. Seneviratne & Justin Sheffield & Michael L. Goulden & Gordon Bonan & Alessandro Cescatti & Jiquan Chen & Richard de Jeu & A. Johannes Dolman, 2010. "Recent decline in the global land evapotranspiration trend due to limited moisture supply," Nature, Nature, vol. 467(7318), pages 951-954, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:plo:pone00:0069625 is not listed on IDEAS
    2. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    3. Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
    4. Songbai Hong & Jinzhi Ding & Fei Kan & Hao Xu & Shaoyuan Chen & Yitong Yao & Shilong Piao, 2023. "Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Song, Lisheng & Bateni, Sayed M. & Xu, Yanhao & Xu, Tongren & He, Xinlei & Ki, Seo Jin & Liu, Shaomin & Ma, Minguo & Yang, Yang, 2021. "Reconstruction of remotely sensed daily evapotranspiration data in cloudy-sky conditions," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Qiutong Zhang & Jinling Kong & Lizheng Wang & Xixuan Wang & Zaiyong Zhang & Yizhu Jiang & Yanling Zhong, 2024. "A Dual-Source Energy Balance Model Coupled with Jarvis Canopy Resistance for Estimating Surface Evapotranspiration in Arid and Semi-Arid Regions," Agriculture, MDPI, vol. 14(12), pages 1-20, December.
    9. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    10. Faris A. Almalki & Ben Othman Soufiene & Saeed H. Alsamhi & Hedi Sakli, 2021. "A Low-Cost Platform for Environmental Smart Farming Monitoring System Based on IoT and UAVs," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    11. Sainte-Marie, J. & Saint-André, L. & Nouvellon, Y. & Laclau, J.-P. & Roupsard, O. & le Maire, G. & Delpierre, N. & Henrot, A. & Barrandon, M., 2014. "A new probabilistic canopy dynamics model (SLCD) that is suitable for evergreen and deciduous forest ecosystems," Ecological Modelling, Elsevier, vol. 290(C), pages 121-133.
    12. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    13. Shubham Kumar & Ritesh Kumar & Manoj Kumar & Alok Kumar Pandey & Prashant K. Srivastava & Sanchit Kumar & Varun Narayan Mishra & V. S. Arya, 2025. "Spatio-temporal variability analysis of evapotranspiration, water use efficiency and net primary productivity in the semi-arid region of Aravalli and Siwalik range, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(3), pages 7897-7918, March.
    14. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Allen Hunt & Boris Faybishenko & Behzad Ghanbarian & Markus Egli & Fang Yu, 2020. "Predicting Water Cycle Characteristics from Percolation Theory and Observational Data," IJERPH, MDPI, vol. 17(3), pages 1-19, January.
    16. Pilar Benito-Verdugo & José Martínez-Fernández & Ángel González-Zamora & Laura Almendra-Martín & Jaime Gaona & Carlos Miguel Herrero-Jiménez, 2023. "Impact of Agricultural Drought on Barley and Wheat Yield: A Comparative Case Study of Spain and Germany," Agriculture, MDPI, vol. 13(11), pages 1-20, November.
    17. Lee Tin Sin & Vineshaa Balakrishnan & Soo-Tueen Bee & Soo-Ling Bee, 2023. "A Review of the Current State of Microplastic Pollution in South Asian Countries," Sustainability, MDPI, vol. 15(8), pages 1-50, April.
    18. Elbeltagi, Ahmed & Srivastava, Aman & Deng, Jinsong & Li, Zhibin & Raza, Ali & Khadke, Leena & Yu, Zhoulu & El-Rawy, Mustafa, 2023. "Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Aakash Singh & Anurag Kanaujia & Vivek Kumar Singh & Ricardo Vinuesa, 2024. "Artificial intelligence for Sustainable Development Goals: Bibliometric patterns and concept evolution trajectories," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 724-754, February.
    20. Amlan Haque & Nahina Islam & Nahidul Hoque Samrat & Shuvashis Dey & Biplob Ray, 2021. "Smart Farming through Responsible Leadership in Bangladesh: Possibilities, Opportunities, and Beyond," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    21. Aldo Rafael Martínez-Sifuentes & Ramón Trucíos-Caciano & Víctor Manuel Rodríguez-Moreno & José Villanueva-Díaz & Juan Estrada-Ávalos, 2023. "The Impact of Climate Change on Evapotranspiration and Flow in a Major Basin in Northern Mexico," Sustainability, MDPI, vol. 15(1), pages 1-17, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1227-:d:1671897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.