IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p316-d1340116.html
   My bibliography  Save this article

Indoor Temperature Forecasting in Livestock Buildings: A Data-Driven Approach

Author

Listed:
  • Carlos Alejandro Perez Garcia

    (Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 48, 40127 Bologna, Italy)

  • Marco Bovo

    (Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 48, 40127 Bologna, Italy)

  • Daniele Torreggiani

    (Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 48, 40127 Bologna, Italy)

  • Patrizia Tassinari

    (Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 48, 40127 Bologna, Italy)

  • Stefano Benni

    (Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 48, 40127 Bologna, Italy)

Abstract

The escalating global population and climate change necessitate sustainable livestock production methods to meet rising food demand. Precision Livestock Farming (PLF) integrates information and communication technologies (ICT) to improve farming efficiency and animal health. Unlike traditional methods, PLF uses machine learning (ML) algorithms to analyze data in real time, providing valuable insights to decision makers. Dairy farming in diverse climates is challenging and requires well-designed structures to regulate internal environmental parameters. This study explores the application of the Facebook-developed Prophet algorithm to predict indoor temperatures in a dairy farm over a 72 h horizon. Exogenous variables sourced from the Open-Meteo platform improve the accuracy of the model. The paper details case study construction, data acquisition, preprocessing, and model training, highlighting the importance of seasonality in environmental variables. Model validation using key metrics shows consistent accuracy across different dates, as the mean absolute percentage error on daily base ranges from 1.71% to 2.62%. The results indicate excellent model performance, especially considering the operational context. The study concludes that black box models, such as the Prophet algorithm, are effective for predicting indoor temperatures in livestock buildings and provide valuable insights for environmental control and optimization in livestock production. Future research should explore gray box models that integrate physical building characteristics to improve predictive performance and HVAC system control.

Suggested Citation

  • Carlos Alejandro Perez Garcia & Marco Bovo & Daniele Torreggiani & Patrizia Tassinari & Stefano Benni, 2024. "Indoor Temperature Forecasting in Livestock Buildings: A Data-Driven Approach," Agriculture, MDPI, vol. 14(2), pages 1-14, February.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:316-:d:1340116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferracuti, Francesco & Fonti, Alessandro & Ciabattoni, Lucio & Pizzuti, Stefano & Arteconi, Alessia & Helsen, Lieve & Comodi, Gabriele, 2017. "Data-driven models for short-term thermal behaviour prediction in real buildings," Applied Energy, Elsevier, vol. 204(C), pages 1375-1387.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    2. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    3. Killian, M. & Zauner, M. & Kozek, M., 2018. "Comprehensive smart home energy management system using mixed-integer quadratic-programming," Applied Energy, Elsevier, vol. 222(C), pages 662-672.
    4. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    5. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    6. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2022. "Estimating dynamic solar gains from on-site measured data: An ARX modelling approach," Applied Energy, Elsevier, vol. 321(C).
    7. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2020. "Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls," Energies, MDPI, vol. 13(12), pages 1-18, June.
    8. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    9. Ahmed, Ahmed I. & McLeod, Robert S. & Gustin, Matej, 2021. "Forecasting underheating in dwellings to detect excess winter mortality risks using time series models," Applied Energy, Elsevier, vol. 286(C).
    10. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Davut Solyali, 2020. "A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus," Sustainability, MDPI, vol. 12(9), pages 1-34, April.
    12. Li, Hao & Zhong, Shengyuan & Wang, Yongzhen & Zhao, Jun & Li, Minxia & Wang, Fu & Zhu, Jiebei, 2020. "New understanding on information’s role in the matching of supply and demand of distributed energy system," Energy, Elsevier, vol. 206(C).
    13. Maltais, Louis-Gabriel & Gosselin, Louis, 2022. "Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons," Applied Energy, Elsevier, vol. 307(C).
    14. Niu, Jide & Tian, Zhe & Lu, Yakai & Zhao, Hongfang, 2019. "Flexible dispatch of a building energy system using building thermal storage and battery energy storage," Applied Energy, Elsevier, vol. 243(C), pages 274-287.
    15. Kamel, Ehsan & Sheikh, Shaya & Huang, Xueqing, 2020. "Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days," Energy, Elsevier, vol. 206(C).
    16. Yue, Bao & Wei, Ziqing & Zheng, Chunyuan & Ding, Yunxiao & Li, Bin & Li, Dongdong & Liang, Xingang & Zhai, Xiaoqiang, 2023. "Power consumption prediction of variable refrigerant flow system through data-physics hybrid approach: An online prediction test in office building," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:316-:d:1340116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.