IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1620-d1219035.html
   My bibliography  Save this article

Melatonin Secretion in Regulating the Circadian Rhythms of Reproduction in Goose ( Anser cygnoides )

Author

Listed:
  • Qiang Bao

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China)

  • Di Liu

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China)

  • Yujiao Guo

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China)

  • Wang Gu

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China)

  • Zhengfeng Cao

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China)

  • Yu Zhang

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China)

  • Yang Zhang

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China)

  • Qi Xu

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China)

  • Guohong Chen

    (Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
    Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China)

Abstract

Circadian rhythms affect the physiology and behavior of most organisms. The ovulation–laying cycle of poultry exhibits evident rhythmic patterns. However, the underlying biological mechanism has remained unclear. Herein, Yangzhou goose ( Anser cygnoides ) were selected at 6:00, 12:00, 18:00, and 24:00 ( n = 6/timepoint) to investigate the regulation of circadian egg-laying through the light-driven melatonin secretion. Our study revealed that the laying rates displayed diurnal fluctuations, with a peak of 40% of eggs being laid between 4:00 and 7:00. The cosine analysis revealed that the expression of clock genes exhibited rhythmicities ( p < 0.05). Relevantly, melatonin secretion also displayed circadian rhythmicity and sharply decreases with increasing amount of light ( p < 0.001). The immunohistochemical analysis found that the melatonin receptor is highly expressed during the night period. Notably, tissue distribution analysis further revealed that the melatonin receptor genes showed a decreasing trend in the pineal gland and hypothalamic–pituitary–gonad (HPG) axis throughout the day. Concomitantly, the expression of reproduction-related genes at 12:00 was significantly higher than that at 24:00 ( p < 0.01). Taken together, these data suggested cyclical secretion of melatonin in response to photoperiod, which acts as a neuroendocrine transducer of circadian rhythm and the time preference of reproduction in domestic geese.

Suggested Citation

  • Qiang Bao & Di Liu & Yujiao Guo & Wang Gu & Zhengfeng Cao & Yu Zhang & Yang Zhang & Qi Xu & Guohong Chen, 2023. "Melatonin Secretion in Regulating the Circadian Rhythms of Reproduction in Goose ( Anser cygnoides )," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1620-:d:1219035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven M. Reppert & David R. Weaver, 2002. "Coordination of circadian timing in mammals," Nature, Nature, vol. 418(6901), pages 935-941, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Riganello & Valeria Prada & Andres Soddu & Carol di Perri & Walter G. Sannita, 2019. "Circadian Rhythms and Measures of CNS/Autonomic Interaction," IJERPH, MDPI, vol. 16(13), pages 1-11, July.
    2. Purificación Gómez-Abellán & Antoni Díez-Noguera & Juan A Madrid & Juan A Luján & José M Ordovás & Marta Garaulet, 2012. "Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
    3. Nguyen, Ha Trong & Zubrick, Stephen R. & Mitrou, Francis, 2022. "The effects of sleep duration on child health and development," GLO Discussion Paper Series 1150, Global Labor Organization (GLO).
    4. Francisco J Sánchez Muniz & Cristina Simón Martín, 2017. "Clock Genes, Chronodisruption, Nutrition and Obesity," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 3(2), pages 1-62:3, July.
    5. Henson, Michael A., 2013. "Multicellular models of intercellular synchronization in circadian neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 48-64.
    6. Andrew E. Warfield & Pooja Gupta & Madison M. Ruhmann & Quiana L. Jeffs & Genevieve C. Guidone & Hannah W. Rhymes & McKenzi I. Thompson & William D. Todd, 2023. "A brainstem to circadian system circuit links Tau pathology to sundowning-related disturbances in an Alzheimer’s disease mouse model," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Cheng-Kang Chiang & Neel Mehta & Abhilasha Patel & Peng Zhang & Zhibin Ning & Janice Mayne & Warren Y L Sun & Hai-Ying M Cheng & Daniel Figeys, 2014. "The Proteomic Landscape of the Suprachiasmatic Nucleus Clock Reveals Large-Scale Coordination of Key Biological Processes," PLOS Genetics, Public Library of Science, vol. 10(10), pages 1-15, October.
    8. Li, Ying & Liu, Zengrong, 2015. "Dynamical mechanism of Bmal1/Rev-erbα loop in circadian clock," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 126-135.
    9. Sumedha W Karmarkar & Kathleen M Bottum & Stacey L Krager & Shelley A Tischkau, 2011. "ERK/MAPK Is Essential for Endogenous Neuroprotection in SCN2.2 Cells," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    10. Valerie L Harbour & Yuval Weigl & Barry Robinson & Shimon Amir, 2013. "Comprehensive Mapping of Regional Expression of the Clock Protein PERIOD2 in Rat Forebrain across the 24-h Day," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-14, October.
    11. O. Slaby & S. Sager & O. S. Shaik & U. Kummer & D. Lebiedz, 2007. "Optimal control of self-organized dynamics in cellular signal transduction," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 13(5), pages 487-502, October.
    12. Michal Dudek & Dharshika R. J. Pathiranage & Beatriz Bano-Otalora & Anna Paszek & Natalie Rogers & Cátia F. Gonçalves & Craig Lawless & Dong Wang & Zhuojing Luo & Liu Yang & Farshid Guilak & Judith A., 2023. "Mechanical loading and hyperosmolarity as a daily resetting cue for skeletal circadian clocks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. René Carmona & Christy V. Graves, 2020. "Jet Lag Recovery: Synchronization of Circadian Oscillators as a Mean Field Game," Dynamic Games and Applications, Springer, vol. 10(1), pages 79-99, March.
    14. Jing Wang & Haibo Di & Steven Laureys & Nantu Hu, 2018. "Circadian Rhythm of Patients with Disorders of Consciousness," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 9(3), pages 60-61, November.
    15. Yan-Ying Wang & Wei-Wei Ma & I-Feng Peng, 2020. "Screening of sleep assisting drug candidates with a Drosophila model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
    16. Hyeri Nam & Younghwan Lee & Boil Kim & Ji-Won Lee & Seohyeon Hwang & Hyun-Kyu An & Kyung Min Chung & Youngjin Park & Jihyun Hong & Kyungjin Kim & Eun-Kyoung Kim & Han Kyoung Choe & Seong-Woon Yu, 2022. "Presenilin 2 N141I mutation induces hyperactive immune response through the epigenetic repression of REV-ERBα," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Li, Ying & Liu, Zengrong, 2016. "Coupling mechanism in the gate and oscillator model of the SCN," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 62-72.
    18. Valerie L Harbour & Yuval Weigl & Barry Robinson & Shimon Amir, 2014. "Phase Differences in Expression of Circadian Clock Genes in the Central Nucleus of the Amygdala, Dentate Gyrus, and Suprachiasmatic Nucleus in the Rat," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    19. Tanida, Sakurako, 2022. "The synchronization of elevators when not all passengers will ride the first-arriving elevator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    20. Matthew Carlucci & Tristram Lett & Sofia Chavez & Alexandra Malinowski & Nancy J. Lobaugh & Art Petronis, 2023. "Diurnal oscillations of MRI metrics in the brains of male participants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1620-:d:1219035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.