IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p2020-d1262110.html
   My bibliography  Save this article

Smart Temperature and Humidity Control in Pig House by Improved Three-Way K-Means

Author

Listed:
  • Haopu Li

    (College of Agricultural Engineering, Shanxi Agriculture University, Jinzhong 030801, China)

  • Haoming Li

    (College of Information Science and Engineering, Shanxi Agriculture University, Jinzhong 030801, China)

  • Bugao Li

    (College of Animal Science, Shanxi Agriculture University, Jinzhong 030801, China)

  • Jiayuan Shao

    (College of Agricultural Engineering, Shanxi Agriculture University, Jinzhong 030801, China)

  • Yanbo Song

    (College of Life Sciences, Shanxi Agriculture University, Jinzhong 030801, China)

  • Zhenyu Liu

    (College of Agricultural Engineering, Shanxi Agriculture University, Jinzhong 030801, China)

Abstract

Efficiently managing temperature and humidity in a pig house is crucial for enhancing animal welfare. This research endeavors to develop an intelligent temperature and humidity control system grounded in a three-way decision and clustering algorithm. To establish and validate the effectiveness of this intelligent system, experiments were conducted to compare its performance against a naturally ventilated pig house without any control system. Additionally, comparisons were made with a threshold-based control system to evaluate the duration of temperature anomalies. The experimental findings demonstrate a substantial improvement in temperature regulation within the experimental pig house. Over a 24 h period, the minimum temperature increased by 4 °C, while the maximum temperature decreased by 8 °C, approaching the desired range. Moreover, the average air humidity decreased from 73.4% to 68.2%. In summary, this study presents a precision-driven intelligent control strategy for optimizing temperature and humidity management in pig housing facilities.

Suggested Citation

  • Haopu Li & Haoming Li & Bugao Li & Jiayuan Shao & Yanbo Song & Zhenyu Liu, 2023. "Smart Temperature and Humidity Control in Pig House by Improved Three-Way K-Means," Agriculture, MDPI, vol. 13(10), pages 1-22, October.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:2020-:d:1262110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/2020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/2020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shin, Hakjong & Kwak, Younghoon & Jo, Seng-Kyoun & Kim, Se-Han & Huh, Jung-Ho, 2023. "Development of an optimal mechanical ventilation system control strategy based on weather forecasting data for outdoor air cooling in livestock housing," Energy, Elsevier, vol. 268(C).
    2. Zbynek Havelka & Radim Kunes & Yevhen Kononets & Jessica Elizabeth Stokes & Lubos Smutny & Pavel Olsan & Jan Kresan & Radim Stehlik & Petr Bartos & Maohua Xiao & Pavel Kriz & Pavol Findura & David Roz, 2022. "Technology of Microclimate Regulation in Organic and Energy-Sustainable Livestock Production," Agriculture, MDPI, vol. 12(10), pages 1-24, September.
    3. Hua Jin & Gang Meng & Yuanzhi Pan & Xing Zhang & Changda Wang, 2022. "An Improved Intelligent Control System for Temperature and Humidity in a Pig House," Agriculture, MDPI, vol. 12(12), pages 1-21, November.
    4. Hannah Licharz & Peter Rösmann & Manuel S. Krommweh & Ehab Mostafa & Wolfgang Büscher, 2020. "Energy Efficiency of a Heat Pump System: Case Study in Two Pig Houses," Energies, MDPI, vol. 13(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Nowak & Sławomir Rabczak, 2020. "Technical and Economic Analysis of the External Surface Heating System on the Example of a Car Park," Energies, MDPI, vol. 13(24), pages 1-15, December.
    2. Andrea Costantino, 2023. "Development, Validation, and Application of Building Energy Simulation Models for Livestock Houses: A Systematic Review," Agriculture, MDPI, vol. 13(12), pages 1-28, December.
    3. Marco Briceño-León & Dennys Pazmiño-Quishpe & Jean-Michel Clairand & Guillermo Escrivá-Escrivá, 2021. "Energy Efficiency Measures in Bakeries toward Competitiveness and Sustainability—Case Studies in Quito, Ecuador," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
    4. Hauke F. Deeken & Alexandra Lengling & Manuel S. Krommweh & Wolfgang Büscher, 2023. "Improvement of Piglet Rearing’s Energy Efficiency and Sustainability Using Air-to-Air Heat Exchangers—A Two-Year Case Study," Energies, MDPI, vol. 16(4), pages 1-30, February.
    5. Ivan Ignatkin & Sergey Kazantsev & Nikolay Shevkun & Dmitry Skorokhodov & Nikita Serov & Aleksei Alipichev & Vladimir Panchenko, 2023. "Developing and Testing the Air Cooling System of a Combined Climate Control Unit Used in Pig Farming," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    6. Aleksey Kuzmichev & Aleksei Khimenko & Dmitry Tikhomirov & Dmitry Budnikov & Marek Jasiński & Vadim Bolshev & Ivan Ignatkin, 2023. "Study of Potential Application Air Curtains in Livestock Premises at Cattle Management Farms," Agriculture, MDPI, vol. 13(6), pages 1-19, June.
    7. Manuel S. Krommweh & Hauke F. Deeken & Hannah Licharz & Wolfgang Büscher, 2021. "Heating Performance and Ammonia Removal of a Single-Stage Bioscrubber Pilot Plant with Integrated Heat Exchanger under Field Conditions," Energies, MDPI, vol. 14(20), pages 1-17, October.
    8. Gniewko Niedbała & Sebastian Kujawa, 2023. "Digital Innovations in Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:2020-:d:1262110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.