IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p1867-d1246651.html
   My bibliography  Save this article

Pipe Cavitation Parameters Reveal Bubble Embolism Dynamics in Maize Xylem Vessels across Water Potential Gradients

Author

Listed:
  • Yangjie Ren

    (Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Yitong Zhang

    (Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Shiyang Guo

    (Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Ben Wang

    (Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Siqi Wang

    (Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing 100083, China)

  • Wei Gao

    (Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing 100083, China)

Abstract

Maize, a crop of international relevance, frequently undergoes xylem embolism due to water shortage, negatively impacting growth, yield, and quality. Consequently, a refined comprehension of xylem embolism is vital for enhancing maize cultivation. Notwithstanding extensive research and the generation of analytical models for embolism mechanisms, prevalent models often disregard crop-specific hydraulic processes and the formation of embolisms via air bubbles in the xylem conduit. In this research, we present an inventive model applying pipe cavitation parameters to discern water potential and bubble formation in maize leaf xylem. The model integrates pivotal physiological traits of the maize–leaf count, leaf vein count, and diameter of xylem vessels—demonstrating robust correlations. Furthermore, we constructed Percent Loss of Conductivity (PLC) curve based on water potential and compared it with our model, offering interval data to observe embolization events triggered by air bubbles. Utilizing experimental data, our novel cavitation-parameter-based model effectively corresponds with observed bubble phenomena and appropriately characterizes water transport in plant xylem conduits. This method enabled us to observe the transition from bubble occurrence to cavitation embolism microscopically, which aligned with the embolism intervals provided by the model. This procedure reveals potential trends in bubble-induced embolism and deepens our knowledge of microscopic plant hydraulics and crop embolism. This work establishes a basis for understanding the generation of bubble embolisms in maize, assists in evaluating maize-plant water status for efficient water supply management throughout the growth cycle, and contributes towards potential water management strategies for maize.

Suggested Citation

  • Yangjie Ren & Yitong Zhang & Shiyang Guo & Ben Wang & Siqi Wang & Wei Gao, 2023. "Pipe Cavitation Parameters Reveal Bubble Embolism Dynamics in Maize Xylem Vessels across Water Potential Gradients," Agriculture, MDPI, vol. 13(10), pages 1-17, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1867-:d:1246651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/1867/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/1867/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lyudmila Simova-Stoilova & Valya Vassileva & Urs Feller, 2016. "Selection and Breeding of Suitable Crop Genotypes for Drought and Heat Periods in a Changing Climate: Which Morphological and Physiological Properties Should Be Considered?," Agriculture, MDPI, vol. 6(2), pages 1-19, June.
    2. Olaf Erenstein & Moti Jaleta & Kai Sonder & Khondoker Mottaleb & B.M. Prasanna, 2022. "Global maize production, consumption and trade: trends and R&D implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1295-1319, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    2. Philippe Etienne & Sylvain Diquelou & Marion Prudent & Christophe Salon & Anne Maillard & Alain Ourry, 2018. "Macro and Micronutrient Storage in Plants and Their Remobilization When Facing Scarcity: The Case of Drought," Agriculture, MDPI, vol. 8(1), pages 1-17, January.
    3. Mirosław Wyszkowski & Natalia Kordala, 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation," Energies, MDPI, vol. 17(7), pages 1-19, April.
    4. Kamila Nowosad & Jan Bocianowski & Farzad Kianersi & Alireza Pour-Aboughadareh, 2023. "Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize ( Zea mays L.)," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    5. Anna Barriviera & Diego Bosco & Sara Daniotti & Carlo Massimo Pozzi & Maria Elena Saija & Ilaria Re, 2023. "Assessing Farmers’ Willingness to Pay for Adopting Sustainable Corn Traits: A Choice Experiment in Italy," Sustainability, MDPI, vol. 15(18), pages 1-13, September.
    6. Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Meng Wang & Haiming Duan & Cheng Zhou & Li Yu & Xiangtao Meng & Wenjie Lu & Haibing Yu, 2024. "Synergistic Effects of Chemical Fungicides with Crude Extracts from Bacillus amyloliquefaciens to Control Northern Corn Leaf Blight," Agriculture, MDPI, vol. 14(4), pages 1-16, April.
    8. Rafał Januszkiewicz & Grzegorz Kulczycki & Mateusz Samoraj, 2023. "Foliar Fertilization of Crop Plants in Polish Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-14, August.
    9. András Bence Szerb & Arnold Csonka & Imre Fertő, 2022. "Regional trade agreements, globalization, and global maize exports," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(10), pages 371-379.
    10. Sergei Kharin & Zuzana Kapustova & Ivan Lichner, 2023. "Price transmission between maize and poultry product markets in the Visegrád Group countries: What is more nonlinear, egg or chicken?," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(12), pages 510-522.
    11. José Luis Villalpando-Aguilar & Daniel Francisco Chi-Maas & Itzel López-Rosas & Victor Ángel Aquino-Luna & Jesús Arreola-Enríquez & Julia Cristel Alcudia-Pérez & Gilberto Matos-Pech & Roberto Carlos G, 2022. "Urban Agriculture as an Alternative for the Sustainable Production of Maize and Peanut," Agriculture, MDPI, vol. 13(1), pages 1-13, December.
    12. Arkadiusz Stępień & Katarzyna Wojtkowiak & Ewelina Kolankowska & Renata Pietrzak-Fiećko, 2024. "Corn Grain Fatty Acid Contents in Response to Organic Fertilisers from Meat Industry Waste," Sustainability, MDPI, vol. 16(3), pages 1-19, January.
    13. Urs Feller & Stanislav Kopriva & Valya Vassileva, 2018. "Plant Nutrient Dynamics in Stressful Environments: Needs Interfere with Burdens," Agriculture, MDPI, vol. 8(7), pages 1-6, July.
    14. Vinay Bhatt & Vignesh Muthusamy & Rashmi Chhabra & Ashvinkumar Katral & Shridhar Ragi & Vinay Rojaria & Gulab Chand & Govinda Rai Sarma & Rajkumar Uttamrao Zunjare & Kusuma Kumari Panda & Ashok Kumar , 2023. "Molecular Characterization and Haplotype Analysis of Low Phytic Acid-1 ( lpa1 ) Gene Governing Accumulation of Kernel Phytic Acid in Subtropically-Adapted Maize," Agriculture, MDPI, vol. 13(7), pages 1-20, June.
    15. Michael Hilary Otim & Angella Lowra Ajam & Geofrey Ogwal & Stella Aropet Adumo & Dalton Kanyesigye & Saliou Niassy & Girma Hailu & Komivi Senyo Akutse & Sevgan Subramanian, 2024. "Biorationals and Synthetic Insecticides for Controlling Fall Armyworm and Their Influence on the Abundance and Diversity of Parasitoids," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    16. Anna Tedeschi & Domenico Cerrato & Massimo Menenti, 2022. "Is the Potential for Multi-Functional Use of Industrial Hemp Greater than Maize under Saline Conditions?," Sustainability, MDPI, vol. 14(23), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1867-:d:1246651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.