IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p456-d778830.html
   My bibliography  Save this article

Impacts of Irrigation Time and Well Depths on Farmers’ Costs and Benefits in Maize Production

Author

Listed:
  • Anzhen Qin

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Dongfeng Ning

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Zhandong Liu

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Sen Li

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Ben Zhao

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Aiwang Duan

    (Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

Abstract

In the North China Plain, drought usually occurs during the interval between wheat harvest and maize sowing in normal and dry years. The first irrigation for maize plays a critical role in guaranteeing seed germination and grain yields. Using experimental data from Xinxiang in 2019 and survey data of 641 farmers from the North China Plain in 2020, this study adopts a cost-benefit analysis method to investigate the impacts of irrigation time and well depths on farmers’ costs and benefits in maize production. The results showed that farms with well depth > 120 m accounted for 49% of total farms, especially in Hebei Province, and 38% wells had low water yield < 2.7 m 3 kW −1 h −1 . Delaying the time of the first irrigation made maize yields decline by up to 307 kg ha −1 day −1 . Well depths increased irrigation costs and total maize production cost in an exponential manner, causing farmers’ benefits to decrease exponentially with well depths. With well depth > 180 m, the proportion of irrigation cost to total cost rose to 14%, whereas well depth > 230 m directly caused the farmers’ profits negative. A critical well depth of 230 m was put forward as the upper limit for farmers adopting maize planting in the NCP. The concept of ‘rotational irrigation strategy’ and suggestions of adopting drip irrigation, sprinkler irrigation, or hose-reel sprinkler irrigation were recommended to advance 6–8 days for the first irrigation period, compared with traditional flood irrigation.

Suggested Citation

  • Anzhen Qin & Dongfeng Ning & Zhandong Liu & Sen Li & Ben Zhao & Aiwang Duan, 2022. "Impacts of Irrigation Time and Well Depths on Farmers’ Costs and Benefits in Maize Production," Agriculture, MDPI, vol. 12(4), pages 1-15, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:456-:d:778830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Yuting & Huang, Xianjin & Bao, Helen X.H. & Ju, Xiang & Zhong, Taiyang & Chen, Zhigang & Zhou, Yan, 2018. "Rural land rights reform and agro-environmental sustainability: Empirical evidence from China," Land Use Policy, Elsevier, vol. 74(C), pages 73-87.
    2. Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    3. Wu, Dong & Fang, Shibo & Li, Xuan & He, Di & Zhu, Yongchao & Yang, Zaiqiang & Xu, Jiaxin & Wu, Yingjie, 2019. "Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain," Agricultural Water Management, Elsevier, vol. 214(C), pages 78-86.
    4. Bjornlund, Henning & Zuo, Alec & Wheeler, Sarah Ann & Parry, Karen & Pittock, Jamie & Mdemu, Makarius & Moyo, Martin, 2019. "The dynamics of the relationship between household decision-making and farm household income in small-scale irrigation schemes in southern Africa," Agricultural Water Management, Elsevier, vol. 213(C), pages 135-145.
    5. Ge, Maosheng & Wu, Pute & Zhu, Delan & Zhang, Lin & Cai, Yaohui, 2020. "Optimized configuration of a hose reel traveling irrigator," Agricultural Water Management, Elsevier, vol. 240(C).
    6. Zhang, Kang & Xie, Xianhong & Zhu, Bowen & Meng, Shanshan & Yao, Yi, 2019. "Unexpected groundwater recovery with decreasing agricultural irrigation in the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 858-867.
    7. Yang, Hong & Zhang, Xiaohe & Zehnder, Alexander J. B., 2003. "Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture," Agricultural Water Management, Elsevier, vol. 61(2), pages 143-161, June.
    8. Liangzhen Zang & Yahua Wang & Yiqing Su, 2021. "Does Farmland Scale Management Promote Rural Collective Action? An Empirical Study of Canal Irrigation Systems in China," Land, MDPI, vol. 10(11), pages 1-25, November.
    9. Wang, Feng & Xiao, Junfu & Ming, Bo & Xie, Ruizhi & Wang, Keru & Hou, Peng & Liu, Guangzhou & Zhang, Guoqiang & Chen, Jianglu & Liu, Wanmao & Yang, Yunshan & Qin, Anzhen & Li, Shaokun, 2021. "Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates," Agricultural Water Management, Elsevier, vol. 247(C).
    10. Purola, Tuomo & Lehtonen, Heikki, 2020. "Evaluating profitability of soil-renovation investments under crop rotation constraints in Finland," Agricultural Systems, Elsevier, vol. 180(C).
    11. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    12. Anzhen Qin & Dongfeng Ning & Zhandong Liu & Sen Li & Ben Zhao & Aiwang Duan, 2021. "Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    13. Marjan Aziz & Sultan Ahmad Rizvi & Muhammad Azhar Iqbal & Sairah Syed & Muhammad Ashraf & Saira Anwer & Muhammad Usman & Nazia Tahir & Azra Khan & Sana Asghar & Jamil Akhtar, 2021. "A Sustainable Irrigation System for Small Landholdings of Rainfed Punjab, Pakistan," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leghari, Shah Jahan & Hu, Kelin & Wei, Yichang & Wang, Tongchao & Bhutto, Tofique Ahmed & Buriro, Mahmooda, 2021. "Modelling water consumption, N fates and maize yield under different water-saving management practices in China and Pakistan," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Basil Manos & Thomas Bournaris & Mohd Kamruzzaman & Moss Begum & Ara Anjuman & Jason Papathanasiou, 2006. "Regional Impact of Irrigation Water Pricing in Greece under Alternative Scenarios of European Policy: A Multicriteria Analysis," Regional Studies, Taylor & Francis Journals, vol. 40(9), pages 1055-1068.
    4. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    5. Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2022. "Estimating potential yield and change in water budget for wheat and maize across Huang-Huai-Hai Plain in the future," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Ma, Shuang & Mu, Ren, 2020. "Forced off the farm? Farmers’ labor allocation response to land requisition in China," World Development, Elsevier, vol. 132(C).
    7. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Zehua Wang & Fachao Liang & Sheng-Hau Lin, 2023. "Can socially sustainable development be achieved through homestead withdrawal? A hybrid multiple-attributes decision analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    9. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    10. Chuanxin Xia & Yu Zhao & Qingxia Zhao & Shuo Wang & Ning Zhang, 2022. "Exact Eco-Efficiency Measurement in the Yellow River Basin: A New Non-Parametric Approach," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    11. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Zhang, Yuanxia & Halder, Pradipta & Zhang, Xiaoning & Qu, Mei, 2020. "Analyzing the deviation between farmers' Land transfer intention and behavior in China's impoverished mountainous Area: A Logistic-ISM model approach," Land Use Policy, Elsevier, vol. 94(C).
    13. Zihao Li & Xihang Xie & Xinyue Yan & Tingting Bai & Dong Xu, 2022. "Impact of China’s Rural Land Marketization on Ecological Environment Quality Based on Remote Sensing," IJERPH, MDPI, vol. 19(19), pages 1-21, October.
    14. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    15. Xie, Jinhua & Yang, Gangqiao & Wang, Ge & Song, Yan & Yang, Fan, 2021. "How do different rural-land-consolidation modes shape farmers’ ecological production behaviors?," Land Use Policy, Elsevier, vol. 109(C).
    16. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    17. Michaela ŠKEŘÍKOVÁ & Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Michael HOFBAUER, 2018. "Water demands and biomass production of sorghum and maize plants in areas with insufficient precipitation in Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 367-378.
    18. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    19. Leng Liu & Bo Liu & Wei Song & Hao Yu, 2023. "The Relationship between Rural Sustainability and Land Use: A Bibliometric Review," Land, MDPI, vol. 12(8), pages 1-25, August.
    20. Ning Geng & Mengyao Wang & Zengjin Liu, 2022. "Farmland Transfer, Scale Management and Economies of Scale Assessment: Evidence from the Main Grain-Producing Shandong Province in China," Sustainability, MDPI, vol. 14(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:456-:d:778830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.