IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1521-d922229.html
   My bibliography  Save this article

Grazing Intensity Has More Effect on the Potential Nitrification Activity Than the Potential Denitrification Activity in An Alpine Meadow

Author

Listed:
  • Jingyi Dong

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    These authors contributed equally to this work.)

  • Liming Tian

    (Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
    These authors contributed equally to this work.)

  • Jiaqi Zhang

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Yinghui Liu

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Haiyan Li

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Qi Dong

    (State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

Abstract

On the Qinghai–Tibet Plateau, nitrogen (N) cycling, such as nitrification and denitrification, in the alpine meadow soils have been considerably affected by grazing, with possible consequences for nitrous oxide (N 2 O) emissions. However, there is a lack of understanding about how the potential nitrification activity (PNA) and the potential denitrification activity (PDA) might be affected by the grazing intensity. We collected the soil samples in alpine meadow in the east of the Qinghai–Tibet Plateau that was grazed at different intensities from 2015 in peak growing season 2021. We determined the soil physical and chemical properties, the functional gene abundances of nitrifiers and denitrifiers, and the soil PNA and PDA to explore the relationships between a range of abiotic and biotic factors and the PNA and PDA. We found that the PNA and the nitrifiers were significantly affected by the grazing intensity but that the PDA and the denitrifiers were not. The ammonia-oxidizing archaea (AOA) abundance was highest but the ammonia-oxidizing bacteria (AOB)abundance was lower than the control significantly at the highest grazing intensity. The AOA abundance and the soil NH 4 + -N explained most of the variation in the PNA. The pH was the main predictor of the PDA and controlled the nirS abundance but not the nirK and nosZ abundances. Overall, the PNA was more responsive to the grazing intensity than the PDA. These findings can improve estimations of the nitrification and denitrification process and N 2 O emissions in alpine meadow.

Suggested Citation

  • Jingyi Dong & Liming Tian & Jiaqi Zhang & Yinghui Liu & Haiyan Li & Qi Dong, 2022. "Grazing Intensity Has More Effect on the Potential Nitrification Activity Than the Potential Denitrification Activity in An Alpine Meadow," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1521-:d:922229
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongfei Bai & Xingguo Han & Jianguo Wu & Zuozhong Chen & Linghao Li, 2004. "Ecosystem stability and compensatory effects in the Inner Mongolia grassland," Nature, Nature, vol. 431(7005), pages 181-184, September.
    2. Benjamin Wolf & Xunhua Zheng & Nicolas Brüggemann & Weiwei Chen & Michael Dannenmann & Xingguo Han & Mark A. Sutton & Honghui Wu & Zhisheng Yao & Klaus Butterbach-Bahl, 2010. "Grazing-induced reduction of natural nitrous oxide release from continental steppe," Nature, Nature, vol. 464(7290), pages 881-884, April.
    3. Willm Martens-Habbena & Paul M. Berube & Hidetoshi Urakawa & José R. de la Torre & David A. Stahl, 2009. "Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria," Nature, Nature, vol. 461(7266), pages 976-979, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    2. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    3. Mouldi Gamoun & Mounir Louhaichi, 2021. "Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia," Land, MDPI, vol. 10(3), pages 1-12, March.
    4. Wen Wang & Huamin Liu & Jinghui Zhang & Zhiyong Li & Lixin Wang & Zheng Wang & Yantao Wu & Yang Wang & Cunzhu Liang, 2020. "Effect of Grazing Types on Community-Weighted Mean Functional Traits and Ecosystem Functions on Inner Mongolian Steppe, China," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    5. Zhen-Zhen Zheng & Li-Wei Zheng & Min Nina Xu & Ehui Tan & David A. Hutchins & Wenchao Deng & Yao Zhang & Dalin Shi & Minhan Dai & Shuh-Ji Kao, 2020. "Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Saruul Kang & Wenjing Ma & Frank Yonghong Li & Qing Zhang & Jianming Niu & Yong Ding & Fang Han & Xiaoli Sun, 2015. "Functional Redundancy Instead of Species Redundancy Determines Community Stability in a Typical Steppe of Inner Mongolia," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-11, December.
    7. Yang Liu & Qing Zhang & Qingfu Liu & Yongzhi Yan & Wanxin Hei & Deyong Yu & Jianguo Wu, 2020. "Different Household Livelihood Strategies and Influencing Factors in the Inner Mongolian Grassland," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    8. Xuefeng Zhang & Jianming Niu & Alexander Buyantuev & Qing Zhang & Jianjun Dong & Sarula Kang & Jing Zhang, 2016. "Understanding Grassland Degradation and Restoration from the Perspective of Ecosystem Services: A Case Study of the Xilin River Basin in Inner Mongolia, China," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    9. Shrestha, Shailesh & Hennessy, Thia & Abdalla, Mohamed & Forristal, Dermot & Jones, Michael B., 2014. "Determining Short Term Responses of Irish Dairy Farms under Climate Change," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).
    10. Xiang LIU & Zhiming QI & Quan WANG & Zhiwen MA & Lanhai LI, 2017. "Effects of biochar addition on CO2 and CH4 emissions from a cultivated sandy loam soil during freeze-thaw cycles," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(6), pages 243-249.
    11. Guangshuai Wang & Yueping Liang & Fei Ren & Xiaoxia Yang & Zhaorong Mi & Yang Gao & Timothy S. George & Zhenhua Zhang, 2018. "Greenhouse Gas Emissions from the Tibetan Alpine Grassland: Effects of Nitrogen and Phosphorus Addition," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    12. Sharif Hossain & Christopher W. K. Chow & David Cook & Emma Sawade & Guna A. Hewa, 2022. "Review of Nitrification Monitoring and Control Strategies in Drinking Water System," IJERPH, MDPI, vol. 19(7), pages 1-31, March.
    13. Jianfeng Ning & Yuji Arai & Jian Shen & Ronghui Wang & Shaoying Ai, 2021. "Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea," Agriculture, MDPI, vol. 11(6), pages 1-12, June.
    14. Xiuli Gao & Shihai Lv & Zhaoyan Diao & Dewang Wang & Daikui Li & Zhirong Zheng, 2023. "Responses of Vegetation, Soil, and Microbes and Carbon and Nitrogen Pools to Semiarid Grassland Land-Use Patterns in Duolun, Inner Mongolia, China," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    15. Jie Zhou & Yanling Zheng & Lijun Hou & Zhirui An & Feiyang Chen & Bolin Liu & Li Wu & Lin Qi & Hongpo Dong & Ping Han & Guoyu Yin & Xia Liang & Yi Yang & Xiaofei Li & Dengzhou Gao & Ye Li & Zhanfei Li, 2023. "Effects of acidification on nitrification and associated nitrous oxide emission in estuarine and coastal waters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Ahmed Ibrahim Ahmed & Lulu Hou & Ruirui Yan & Xiaoping Xin & Yousif Mohamed Zainelabdeen, 2020. "The Joint Effect of Grazing Intensity and Soil Factors on Aboveground Net Primary Production in Hulunber Grasslands Meadow Steppe," Agriculture, MDPI, vol. 10(7), pages 1-19, July.
    17. Devan Allen McGranahan, 2014. "Ecologies of Scale: Multifunctionality Connects Conservation and Agriculture across Fields, Farms, and Landscapes," Land, MDPI, vol. 3(3), pages 1-31, July.
    18. Nagendranatha Reddy, C. & Venkata Mohan, S., 2016. "Integrated bio-electrogenic process for bioelectricity production and cathodic nutrient recovery from azo dye wastewater," Renewable Energy, Elsevier, vol. 98(C), pages 188-196.
    19. Lin, L. & Norman, J.S. & Barrett, J.E., 2017. "Ammonia-uptake kinetics and domain-level contributions of bacteria and archaea to nitrification in temperate forest soils," Ecological Modelling, Elsevier, vol. 362(C), pages 111-119.
    20. Xiaomin Lv & Guangsheng Zhou, 2018. "Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change," Sustainability, MDPI, vol. 10(10), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1521-:d:922229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.