IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1165-d682680.html
   My bibliography  Save this article

Grain-Filling Characteristics in Extra-Large Panicle Type of Early-Maturing japonica / indica Hybrids

Author

Listed:
  • Tianyao Meng

    (Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China)

  • Xi Chen

    (Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China)

  • Xubin Zhang

    (Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China)

  • Jialin Ge

    (Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China)

  • Guisheng Zhou

    (Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China)

  • Qigen Dai

    (Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China)

  • Huanhe Wei

    (Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China)

Abstract

Early-maturing japonica / indica hybrids (EJIH) have recently been released, performing a yield potential of 13.5 t ha −1 and greater yield increase over conventional japonica rice (CJ) and hybrid indica rice (HI) in production. More spikelets per panicle and improved grain-filling efficiency underlined the basis for the superior yield performance of EJIH. However, few studies are available on the panicle traits and grain-filling characteristics of EJIH, as well as their differences to CJ and HI. In our study, two EJIH, two CJ, and two HI cultivars with similar growth patterns were grown in the same fields. EJIH had a 12.2–18.8% increased ( p < 0.05) grain yield relative to CJ and HI, mainly attributed to their higher daily grain yield. Although it had a lower panicle per m 2 , EJIH exhibited 28.0–38.3% more ( p < 0.05) spikelets per m 2 from an increase of 58.0–87.8% ( p < 0.05) in spikelets per panicle than CJ and HI. Compared with CJ and HI, EJIH had a higher single panicle weight and more grains in the six parts of the panicle, especially in the upper secondary branches (US) and middle secondary branches (MS). EJIH exhibited a higher leaf area index (LAI), leaf area duration (LAD), leaf photosynthetic rate, and SPAD values after heading, which helped increase shoot biomass weight at heading and maturity and post-heading biomass accumulation. For CJ and HI, the grain-filling dynamics of grains in the six parts were all well simulated by the Richards equation. For EJIH, the grain-filling dynamics of grains in the lower secondary branches (LS) were well fitted by the logistics equation, with the Richards equation simulating grain positioning on the other five parts. EJIH had a lower mean grain-filling rate (GR mean ) and longer days and grain filling amounts (GFA) during early, middle, and late stages than CJ and HI. Our results suggest EJIH gave a yield advantage over CJ and HI through a higher daily grain yield. The panicle traits and grain-filling characteristics differed greatly among the three cultivar types. Compared with CJ and HI, EJIH had lower GR mean and higher days and more grains in the panicle during early, middle, and late stages, which contributed to an increased GFA after heading, improved filled-grain efficiency, and higher grain yield.

Suggested Citation

  • Tianyao Meng & Xi Chen & Xubin Zhang & Jialin Ge & Guisheng Zhou & Qigen Dai & Huanhe Wei, 2021. "Grain-Filling Characteristics in Extra-Large Panicle Type of Early-Maturing japonica / indica Hybrids," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1165-:d:682680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Qiang, Shengcai & Zheng, Jing & Xiang, Youzhen & Guo, Jinjin & Zou, Haiyang, 2019. "Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat," Agricultural Water Management, Elsevier, vol. 213(C), pages 983-995.
    2. Huizi Bai & Fulu Tao & Dengpan Xiao & Fengshan Liu & He Zhang, 2016. "Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades," Climatic Change, Springer, vol. 135(3), pages 539-553, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Ma & Yongle Zhu & Shuren Chen & Souleymane Nfamoussa Traore & Yaoming Li & Lizhang Xu & Maolin Shi & Qian Zhang, 2022. "Field Investigation of the Static Friction Characteristics of High-Yielding Rice during Harvest," Agriculture, MDPI, vol. 12(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    3. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Haowei Sun & Jinghan Ma & Li Wang, 2023. "Changes in per capita wheat production in China in the context of climate change and population growth," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 597-612, June.
    5. Yan, Fulai & Zhang, Fucang & Fan, Xingke & Fan, Junliang & Wang, Ying & Zou, Haiyang & Wang, Haidong & Li, Guodong, 2021. "Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Wenjian He & Yiyang Liu & Huaping Sun & Farhad Taghizadeh-Hesary, 2020. "How Does Climate Change Affect Rice Yield in China?," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    7. Lu, Junsheng & Hu, Tiantian & Geng, Chenming & Cui, Xiaolu & Fan, Junliang & Zhang, Fucang, 2021. "Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    9. Jin Guo & Lijian Zheng & Juanjuan Ma & Xufeng Li & Ruixia Chen, 2023. "Meta-Analysis of the Effect of Subsurface Irrigation on Crop Yield and Water Productivity," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    10. Xiao, Chao & Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Li, Yi & Sun, Shikun & Pulatov, Alim, 2021. "Optimizing irrigation amount and fertilization rate of drip-fertigated spring maize in northwest China based on multi-level fuzzy comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 257(C).
    11. Huang, Zhenyu & Zhang, Junxiao & Ren, Dongyang & Hu, Jiaqi & Xia, Guimin & Pan, Baozhu, 2022. "Modeling and assessing water and nitrogen use and crop growth of peanut in semi-arid areas of Northeast China," Agricultural Water Management, Elsevier, vol. 267(C).
    12. Li, Meng & Du, Yingji & Zhang, Fucang & Bai, Yungang & Fan, Junliang & Zhang, Jianghui & Chen, Shaoming, 2019. "Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model," Agricultural Water Management, Elsevier, vol. 218(C), pages 124-138.
    13. Fang, Heng & Liu, Fulai & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2022. "The effect of source–sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization," Agricultural Water Management, Elsevier, vol. 267(C).
    14. Jing, Bing & Shah, Farooq & Xiao, Enshi & Coulter, Jeffrey A. & Wu, Wei, 2020. "Sprinkler irrigation increases grain yield of sunflower without enhancing the risk of root lodging in a dry semi-humid region," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Yujie Liu & Weimo Zhou & Quansheng Ge, 2019. "Spatiotemporal changes of rice phenology in China under climate change from 1981 to 2010," Climatic Change, Springer, vol. 157(2), pages 261-277, November.
    16. Jingyang Tong & Shujun Wang & Zhonghu He & Yan Zhang, 2021. "Effects of Reduced Nitrogen Fertilization and Irrigation on Structure and Physicochemical Properties of Starch in Two Bread Wheat Cultivars," Agriculture, MDPI, vol. 11(1), pages 1-12, January.
    17. Li, Yue & Huang, Guanhua & Chen, Zhijun & Xiong, Yuwu & Huang, Quanzhong & Xu, Xu & Huo, Zailin, 2022. "Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Yuetao Zuo & Xueyue Zhang & Shiyu Zuo & Xiaosong Ren & Zhaoyue Liu & Ling Dong & Jing Li, 2021. "Changes of Stem Characteristics, Senescence Indexes and Yield and Quality of Wintering Rye under Different Populations," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    19. Wu, You & Yan, Shicheng & Fan, Junliang & Zhang, Fucang & Zhao, Wenju & Zheng, Jing & Guo, Jinjin & Xiang, Youzhen & Wu, Lifeng, 2022. "Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 262(C).
    20. Shi, Yifan & Lou, Yunsheng & Zhang, Yiwei & Xu, Zufei, 2021. "Quantitative contributions of climate change, new cultivars adoption, and management practices to yield and global warming potential in rice-winter wheat rotation ecosystems," Agricultural Systems, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1165-:d:682680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.