IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i9p396-d410018.html
   My bibliography  Save this article

The Critical Role of Zinc in Plants Facing the Drought Stress

Author

Listed:
  • Muhammad Umair Hassan

    (Research Centre on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China)

  • Muhammad Aamer

    (Research Centre on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China)

  • Muhammad Umer Chattha

    (Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan)

  • Tang Haiying

    (Research Centre on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China)

  • Babar Shahzad

    (Tasmanian Institute of Agriculture, University of Tasmania, Hobart 7005, Australia)

  • Lorenzo Barbanti

    (Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy)

  • Muhammad Nawaz

    (Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Adnan Rasheed

    (Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China)

  • Aniqa Afzal

    (Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan)

  • Ying Liu

    (Research Centre on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China)

  • Huang Guoqin

    (Research Centre on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China)

Abstract

Drought stress affects plant growth and development by altering physiological and biochemical processes resulting in reduced crop productivity. Zinc (Zn) is an essential micronutrient that plays fundamental roles in crop resistance against the drought stress by regulating various physiological and molecular mechanisms. Under drought stress, Zn application improves seed germination, plant water relations, cell membrane stability, osmolyte accumulation, stomatal regulation, water use efficiency and photosynthesis, thus resulting in significantly better plant performance. Moreover, Zn interacts with plant hormones, increases the expression of stress proteins and stimulates the antioxidant enzymes for counteracting drought effects. To better appraise the potential benefits arising from optimum Zn nutrition, in the present review we discuss the role of Zn in plants under drought stress. Our aim is to provide a complete, updated picture in order to orientate future research directions on this topic.

Suggested Citation

  • Muhammad Umair Hassan & Muhammad Aamer & Muhammad Umer Chattha & Tang Haiying & Babar Shahzad & Lorenzo Barbanti & Muhammad Nawaz & Adnan Rasheed & Aniqa Afzal & Ying Liu & Huang Guoqin, 2020. "The Critical Role of Zinc in Plants Facing the Drought Stress," Agriculture, MDPI, vol. 10(9), pages 1-20, September.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:396-:d:410018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/9/396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/9/396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Kabalan, Rabih & Breidi, Joelle & Chalita, Claude & Rouphael, Youssef, 2007. "Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 90(3), pages 213-223, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Kuziemska & Andrzej Wysokinski & Paulina Klej, 2023. "The Content, Uptake and Bioaccumulation Factor of Copper and Nickel in Grass Depending on Zinc Application and Organic Fertilization," Agriculture, MDPI, vol. 13(9), pages 1-15, August.
    2. Marcelo de Almeida Silva & Gabriel Henrique Germino & Lucas Almeida de Holanda & Laura Costa Oliveira & Hariane Luiz Santos & Maria Márcia Pereira Sartori, 2022. "Sugarcane Productivity as a Function of Zinc Dose and Application Method," Agriculture, MDPI, vol. 12(11), pages 1-12, November.
    3. Daniela Monserrat Sánchez-Pérez & Erika Flores-Loyola & Selenne Yuridia Márquez-Guerrero & Magdalena Galindo-Guzman & Jolanta E. Marszalek, 2023. "Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Larrea tridentata Extract and Their Impact on the In-Vitro Germination and Seedling Growth of Capsicum annuum," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    4. Jia Li & Sara Zafar & Ayesha Javaid & Shagufta Perveen & Zuhair Hasnain & Muhammad Ihtisham & Adeel Abbas & Muhammad Usman & Ahmed H. El-Sappah & Manzar Abbas, 2023. "Zinc Nanoparticles (ZnNPs): High-Fidelity Amelioration in Turnip ( Brassica rapa L.) Production under Drought Stress," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    5. Retwika Ganguly & Anik Sarkar & Disha Dasgupta & Krishnendu Acharya & Chetan Keswani & Victoria Popova & Tatiana Minkina & Aleksey Yu Maksimov & Nilanjan Chakraborty, 2022. "Unravelling the Efficient Applications of Zinc and Selenium for Mitigation of Abiotic Stresses in Plants," Agriculture, MDPI, vol. 12(10), pages 1-18, September.
    6. Yun Wu & Hui Wang & Jinbin Zhu, 2022. "Influence of Reclaimed Water Quality on Infiltration Characteristics of Typical Subtropical Zone Soils: A Case Study in South China," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    7. Dileep Kumar & Khusvadan C. Patel & Vinubhai P. Ramani & Arvind K. Shukla & Sanjib Kumar Behera & Ravi A. Patel, 2022. "Influence of Different Rates and Frequencies of Zn Application to Maize–Wheat Cropping on Crop Productivity and Zn Use Efficiency," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    8. Bosco Justin Shio & Shaomin Guo & Ruifang Zhang & Sikander Khan Tanveer & Jiangbo Hai, 2022. "Diverse Planting Density-Driven Nutrient and Yield Enhancement of Sweet Corn by Zinc and Selenium Foliar Application," Sustainability, MDPI, vol. 14(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.
    2. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    4. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
    5. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
    6. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    7. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    8. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Sánchez, J.M. & López-Urrea, R. & Rubio, E. & González-Piqueras, J. & Caselles, V., 2014. "Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry," Agricultural Water Management, Elsevier, vol. 137(C), pages 23-29.
    10. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    11. Sinha, Indu & Buttar, G.S. & Brar, A.S., 2017. "Drip irrigation and fertigation improve economics, water and energy productivity of spring sunflower (Helianthus annuus L.) in Indian Punjab," Agricultural Water Management, Elsevier, vol. 185(C), pages 58-64.
    12. Anapalli, Saseendran S. & Fisher, Daniel K. & Pinnamaneni, Srinivasa Rao & Reddy, Krishna N., 2020. "Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 233(C).
    13. Mhawej, Mario & Caiserman, Arnaud & Nasrallah, Ali & Dawi, Ali & Bachour, Roula & Faour, Ghaleb, 2020. "Automated evapotranspiration retrieval model with missing soil-related datasets: The proposal of SEBALI," Agricultural Water Management, Elsevier, vol. 229(C).
    14. Kiani, Mina & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Majidi, Mohammad Mahdi & Karchani, Kazem & Hoogenboom, Gerrit, 2016. "Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region," Agricultural Water Management, Elsevier, vol. 171(C), pages 162-172.
    15. Zhang, Jing & Zhang, Huihui & Sima, Matthew W. & Trout, Thomas J. & Malone, Rob W. & Wang, Li, 2021. "Simulated deficit irrigation and climate change effects on sunflower production in Eastern Colorado with CSM-CROPGRO-Sunflower in RZWQM2," Agricultural Water Management, Elsevier, vol. 246(C).
    16. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    17. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    18. Esmaili, Maryam & Aliniaeifard, Sasan & Mashal, Mahmoud & Vakilian, Keyvan Asefpour & Ghorbanzadeh, Parisa & Azadegan, Behzad & Seif, Mehdi & Didaran, Fardad, 2021. "Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Howell, Terry A. & Evett, Steven R. & Tolk, Judy A. & Copeland, Karen S. & Marek, Thomas H., 2015. "Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains," Agricultural Water Management, Elsevier, vol. 162(C), pages 33-46.
    20. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:396-:d:410018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.