IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v162y2015icp33-46.html
   My bibliography  Save this article

Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains

Author

Listed:
  • Howell, Terry A.
  • Evett, Steven R.
  • Tolk, Judy A.
  • Copeland, Karen S.
  • Marek, Thomas H.

Abstract

Sunflower is a diverse crop grown for oil or confectionary uses in the U.S. Southern High Plains, often under irrigation, but its water use, water productivity (water use efficiency) and crop coefficients for irrigation scheduling are not well known for the Texas High Plains. Crop water use (evapotranspiration or ET) was measured in 2009 and 2011 in two 4.4-ha fields using two precision 9m2 weighing lysimeters containing 2.3-m deep monoliths of Pullman clay loam soil. The fields were irrigated with a lateral move sprinkler system with nozzles about 1.7–1.8m above the ground and 1.5-m apart. The sunflower ET averaged 638mm; seed yields averaged 308gm−2; and the lysimeter crop water productivity averaged 0.49kg (dry seed+hull) m−3. Even in the 2011 record drought season with limited soil water reserves, seed yield and oil content appeared similar to those for the 2009 season with greater precipitation and less irrigation requirement. Also, a month later sowing date in 2011, which might occur following an early cotton crop failure, did not appear to greatly affect ET, crop coefficients, or sunflower seed yields. The basal crop coefficients were 0.15 for the initial period after planting (Kcbini) and 1.22 for the peak water use rate at full cover (Kcbmid) based on the daily ASCE short “grass” reference ET (ETos) and FAO 56 climate adjustment. The Kcbmid based on the ASCE taller, rougher “alfalfa” Reference ET (ETrs) was 0.80. Using a thermal-time base (growing degree day) for the crop coefficient did not greatly improve the representation of the crop coefficient. Comparisons of ASCE reference ET computed using hourly versus daily summary data, and for short and tall reference crops, to each other and to FAO 56 reference ET showed that the relationships between reference ET methods varied significantly from one year to the next. This climate effect means that conversions of crop coefficients from one standard ET formulation to another will not be straightforward.

Suggested Citation

  • Howell, Terry A. & Evett, Steven R. & Tolk, Judy A. & Copeland, Karen S. & Marek, Thomas H., 2015. "Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains," Agricultural Water Management, Elsevier, vol. 162(C), pages 33-46.
  • Handle: RePEc:eee:agiwat:v:162:y:2015:i:c:p:33-46
    DOI: 10.1016/j.agwat.2015.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.
    2. Tyagi, N. K. & Sharma, D. K. & Luthra, S. K., 2000. "Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter," Agricultural Water Management, Elsevier, vol. 45(1), pages 41-54, June.
    3. Stone, L. R. & Schlegel, A. J. & Gwin, R. E. & Khan, A. H., 1996. "Response of corn, grain sorghum, and sunflower to irrigation in the High Plains of Kansas," Agricultural Water Management, Elsevier, vol. 30(3), pages 251-259, May.
    4. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Kabalan, Rabih & Breidi, Joelle & Chalita, Claude & Rouphael, Youssef, 2007. "Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 90(3), pages 213-223, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Kiani, Mina & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Majidi, Mohammad Mahdi & Karchani, Kazem & Hoogenboom, Gerrit, 2016. "Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region," Agricultural Water Management, Elsevier, vol. 171(C), pages 162-172.
    3. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    4. Ji, X.B. & Chen, J.M. & Zhao, W.Z. & Kang, E.S. & Jin, B.W. & Xu, S.Q., 2017. "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions," Agricultural Water Management, Elsevier, vol. 192(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    2. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Sánchez, J.M. & López-Urrea, R. & Rubio, E. & González-Piqueras, J. & Caselles, V., 2014. "Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry," Agricultural Water Management, Elsevier, vol. 137(C), pages 23-29.
    4. Sinha, Indu & Buttar, G.S. & Brar, A.S., 2017. "Drip irrigation and fertigation improve economics, water and energy productivity of spring sunflower (Helianthus annuus L.) in Indian Punjab," Agricultural Water Management, Elsevier, vol. 185(C), pages 58-64.
    5. Kiani, Mina & Gheysari, Mahdi & Mostafazadeh-Fard, Behrouz & Majidi, Mohammad Mahdi & Karchani, Kazem & Hoogenboom, Gerrit, 2016. "Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region," Agricultural Water Management, Elsevier, vol. 171(C), pages 162-172.
    6. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Kabalan, Rabih & Breidi, Joelle & Chalita, Claude & Rouphael, Youssef, 2007. "Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 90(3), pages 213-223, June.
    7. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.
    8. Gholamhoseini, M. & Ghalavand, A. & Dolatabadian, A. & Jamshidi, E. & Khodaei-Joghan, A., 2013. "Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress," Agricultural Water Management, Elsevier, vol. 117(C), pages 106-114.
    9. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    10. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    11. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    12. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    14. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    15. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
    16. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
    17. Meysam ABEDINPOUR, 2015. "Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 99-104.
    18. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    19. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    20. Benli, Bogachan & Kodal, Suleyman & Ilbeyi, Adem & Ustun, Haluk, 2006. "Determination of evapotranspiration and basal crop coefficient of alfalfa with a weighing lysimeter," Agricultural Water Management, Elsevier, vol. 81(3), pages 358-370, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:162:y:2015:i:c:p:33-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.