IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v196y2018icp154-161.html
   My bibliography  Save this article

Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions

Author

Listed:
  • Lv, Yuping
  • Xu, Junzeng
  • Yang, Shihong
  • Liu, Xiaoyin
  • Zhang, Jiangang
  • Wang, Yijiang

Abstract

A two-year experiment was conducted to investigate the inter-seasonal and cross-treatment variability in measured rice evapotranspiration (ETcMea), measured single-crop coefficients (KcMea), and treatment-specific calibrated coefficients (KcCal), under different drying-wetting cycles in a subtropical monsoon climate in East China. For each drying-wetting treatment, ETcMea was determined based on data collected in lysimeters, and KcMea was calculated from ETcMea, reference evapotranspiration, and soil moisture deficit coefficient. Following the single-crop coefficient method, KcCal was determined by matching KcMea. In 2012 and 2013, ETcMea varied from 459.5 to 486.7mm, and 544.5–605.1mm, respectively. Its inter-seasonal variability was larger than the cross-treatment variability. Stage-wise average KcMea were 1.07–1.17, 1.30–1.51, 1.49–1.54, and 1.17-1.29 in 2012, and 1.06–1.12, 1.31–1.49, 1.43–1.57, and 1.26–1.27 in 2013 during the initial, crop development, mid-season, and late season stages, respectively. Treatment-specific KcCal were calibrated as 1.09–1.20, 1.51–1.60, and 0.74–0.78 in 2012, and 1.05–1.14, 1.47–1.64, and 0.96–1.01 in 2013 for the initial, mid-season, and end-season stages, respectively. The inter-seasonal and cross-treatment variability in KcMea and KcCal was low. Each treatment-specific KcCal set performed similarly when rice ETc was calculated under different drying-wetting treatments. Cross validation indicated that large daily uncertainty in ETc estimation occurred when daily ETcMea was high, and uncertainty in seasonal ETc calculated using different treatment-specific KcCal sets ranged from 45.7 to 60.1mm (approximate to one irrigation). Calibrating KcCal using more data (season-specificKcCal or mixed treatment KcCal) would improve the accuracy of KcCal in ETc estimation.

Suggested Citation

  • Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
  • Handle: RePEc:eee:agiwat:v:196:y:2018:i:c:p:154-161
    DOI: 10.1016/j.agwat.2017.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741730358X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuo, Sheng-Feng & Ho, Shin-Shen & Liu, Chen-Wuing, 2006. "Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan," Agricultural Water Management, Elsevier, vol. 82(3), pages 433-451, April.
    2. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    3. Choudhury, B.U. & Singh, Anil Kumar, 2016. "Estimation of crop coefficient of irrigated transplanted puddled rice by field scale water balance in the semi-arid Indo-Gangetic Plains, India," Agricultural Water Management, Elsevier, vol. 176(C), pages 142-150.
    4. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    5. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    6. Kashyap, P. S. & Panda, R. K., 2001. "Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region," Agricultural Water Management, Elsevier, vol. 50(1), pages 9-25, August.
    7. Vu, Son Hong & Watanabe, Hirozumi & Takagi, Kazuhiro, 2005. "Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan," Agricultural Water Management, Elsevier, vol. 76(3), pages 195-210, August.
    8. Shukla, S. & Shrestha, N.K. & Jaber, F.H. & Srivastava, S. & Obreza, T.A. & Boman, B.J., 2014. "Evapotranspiration and crop coefficient for watermelon grown under plastic mulched conditions in sub-tropical Florida," Agricultural Water Management, Elsevier, vol. 132(C), pages 1-9.
    9. Tyagi, N. K. & Sharma, D. K. & Luthra, S. K., 2000. "Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter," Agricultural Water Management, Elsevier, vol. 45(1), pages 41-54, June.
    10. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    11. Howell, Terry A. & Evett, Steven R. & Tolk, Judy A. & Copeland, Karen S. & Marek, Thomas H., 2015. "Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains," Agricultural Water Management, Elsevier, vol. 162(C), pages 33-46.
    12. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    13. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    14. Alberto, Ma. Carmelita R. & Wassmann, Reiner & Hirano, Takashi & Miyata, Akira & Hatano, Ryusuke & Kumar, Arvind & Padre, Agnes & Amante, Modesto, 2011. "Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines," Agricultural Water Management, Elsevier, vol. 98(9), pages 1417-1430, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xuhua & Chen, Mengting & Liu, Dong & Li, Dan & Jin, Li & Liu, Shaohui & Cui, Yuanlai & Dong, Bin & Khan, Shahbaz & Luo, Yufeng, 2021. "Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 2018: The role of climate change and rice area expansion," Agricultural Water Management, Elsevier, vol. 253(C).
    2. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    3. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Wei, Jun & Cui, Yuanlai & Luo, Yufeng, 2023. "Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Yang Wang & Shuai Zhang & Xueer Chang, 2020. "Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China," Sustainability, MDPI, vol. 12(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    5. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Shukla, S. & Shrestha, N.K. & Jaber, F.H. & Srivastava, S. & Obreza, T.A. & Boman, B.J., 2014. "Evapotranspiration and crop coefficient for watermelon grown under plastic mulched conditions in sub-tropical Florida," Agricultural Water Management, Elsevier, vol. 132(C), pages 1-9.
    7. Choudhury, B.U. & Singh, Anil Kumar, 2016. "Estimation of crop coefficient of irrigated transplanted puddled rice by field scale water balance in the semi-arid Indo-Gangetic Plains, India," Agricultural Water Management, Elsevier, vol. 176(C), pages 142-150.
    8. Liu, Yujie & Luo, Yi, 2010. "A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(1), pages 31-40, January.
    9. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    10. Meysam ABEDINPOUR, 2015. "Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 99-104.
    11. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    12. Sánchez, J.M. & López-Urrea, R. & Rubio, E. & González-Piqueras, J. & Caselles, V., 2014. "Assessing crop coefficients of sunflower and canola using two-source energy balance and thermal radiometry," Agricultural Water Management, Elsevier, vol. 137(C), pages 23-29.
    13. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    14. Gao, Ya & Xu, Xu & Sun, Chen & Ding, Shibo & Huo, Zailin & Huang, Guanhua, 2021. "Parameterization and modeling of paddy rice (Oryza sativa L. ssp. japonica) growth and water use in cold regions: Yield and water-saving analysis," Agricultural Water Management, Elsevier, vol. 250(C).
    15. Facchi, A. & Gharsallah, O. & Corbari, C. & Masseroni, D. & Mancini, M. & Gandolfi, C., 2013. "Determination of maize crop coefficients in humid climate regime using the eddy covariance technique," Agricultural Water Management, Elsevier, vol. 130(C), pages 131-141.
    16. Naveen-Gupta, & Eberbach, P.L. & Humphreys, E. & Balwinder-Singh, & Sudhir-Yadav, & Kukal, S.S., 2019. "Estimating soil evaporation in dry seeded rice and wheat crops after wetting events," Agricultural Water Management, Elsevier, vol. 217(C), pages 98-106.
    17. Wei, Jun & Cui, Yuanlai & Luo, Yufeng, 2023. "Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation," Agricultural Water Management, Elsevier, vol. 278(C).
    18. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    19. Amazirh, Abdelhakim & Er-Raki, Salah & Ojha, Nitu & Bouras, El houssaine & Rivalland, Vincent & Merlin, Olivier & Chehbouni, Abdelghani, 2022. "Assimilation of SMAP disaggregated soil moisture and Landsat land surface temperature to improve FAO-56 estimates of ET in semi-arid regions," Agricultural Water Management, Elsevier, vol. 260(C).
    20. Gong, Xuewen & Qiu, Rangjian & Sun, Jingsheng & Ge, Jiankun & Li, Yanbin & Wang, Shunsheng, 2020. "Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:196:y:2018:i:c:p:154-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.