IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i10p487-d432266.html
   My bibliography  Save this article

Herbicide Uptake and Regrowth Ability of Tall Fescue and Orchardgrass in S-Metolachlor-Contaminated Leachates from Sand Pot Experiment

Author

Listed:
  • Euro Pannacci

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74-06121 Perugia, Italy)

  • Daniele Del Buono

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74-06121 Perugia, Italy)

  • Maria Luce Bartucca

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74-06121 Perugia, Italy)

  • Luigi Nasini

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74-06121 Perugia, Italy)

  • Primo Proietti

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74-06121 Perugia, Italy)

  • Francesco Tei

    (Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74-06121 Perugia, Italy)

Abstract

The ability of tall fescue ( Festuca arundinacea L.) and orchardgrass ( Dactylis glomerata L.), to remediate leachates polluted with S-metolachlor (SMR) has been assessed in static hydroponic cultures. Different SMR concentrations (0.25, 1.00, and 2.00 mg L −1 ) were applied in the growth media to test the capacity of the two grasses to tolerate and uptake this herbicide, and to regrowth after mowing. S-metolachlor did not severely affect the dry weight aerial biomass of D. glomerata and F. arundinacea , which were reduced by 5% and 10%, respectively, when compared to the untreated control, regardless of the SMR concentrations in the leachate. The regrowth ability of aerial biomass after mowing was reduced at the different SMR concentrations, according to a dose–response model. The SMR concentrations, which reduced the regrowth ability of F. arundinacea and D. glomerata of 10% and 30%, were found to be EC 10 (Effective Concentration) of 0.21 and 0.38 mg L −1 and EC 30 of 0.45 and 0.74 mg L −1 , respectively. These values could be assumed as the SMR concentrations that were well tolerated by both the species, without compromising their aerial biomass regrowth. Finally, tall fescue was found to be more effective and faster than orchardgrass in decreasing the SMR in the leachate and, therefore, this species should be preferred to be used in the vegetative buffer strips (VBS).

Suggested Citation

  • Euro Pannacci & Daniele Del Buono & Maria Luce Bartucca & Luigi Nasini & Primo Proietti & Francesco Tei, 2020. "Herbicide Uptake and Regrowth Ability of Tall Fescue and Orchardgrass in S-Metolachlor-Contaminated Leachates from Sand Pot Experiment," Agriculture, MDPI, vol. 10(10), pages 1-10, October.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:487-:d:432266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/10/487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/10/487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karla L. Gage & Ronald F. Krausz & S. Alan Walters, 2019. "Emerging Challenges for Weed Management in Herbicide-Resistant Crops," Agriculture, MDPI, vol. 9(8), pages 1-11, August.
    2. Ritz, Christian & Streibig, Jens C., 2005. "Bioassay Analysis Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Gabriela Cara & Denis Topa & Lucian Raus & Anca Elena Calistru & Feodor Filipov & Gerard Jitareanu, 2021. "Selective and Sensitive Quantification of Acetochlor and S-Metolachlor in Maize and Soybean Plant Samples by Gas Chromatography-Tandem Mass Spectrometry," Agriculture, MDPI, vol. 11(4), pages 1-10, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floriane Larras & Agnès Bouchez & Frédéric Rimet & Bernard Montuelle, 2012. "Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
    2. Kahm, Matthias & Hasenbrink, Guido & Lichtenberg-Fraté, Hella & Ludwig, Jost & Kschischo, Maik, 2010. "grofit: Fitting Biological Growth Curves with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i07).
    3. Hector Sanz & John J Aponte & Jaroslaw Harezlak & Yan Dong & Aintzane Ayestaran & Augusto Nhabomba & Maxmillian Mpina & Obiang Régis Maurin & Núria Díez-Padrisa & Ruth Aguilar & Gemma Moncunill & Agna, 2017. "drLumi: An open-source package to manage data, calibrate, and conduct quality control of multiplex bead-based immunoassays data analysis," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-18, November.
    4. Camilo Guzmán & Manish Bagga & Amanpreet Kaur & Jukka Westermarck & Daniel Abankwa, 2014. "ColonyArea: An ImageJ Plugin to Automatically Quantify Colony Formation in Clonogenic Assays," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.
    5. Y. Fong & J. Wakefield & S. De Rosa & N. Frahm, 2012. "A Robust Bayesian Random Effects Model for Nonlinear Calibration Problems," Biometrics, The International Biometric Society, vol. 68(4), pages 1103-1112, December.
    6. Jens Peter Andersen & Björn Hammarfelt, 2011. "Price revisited: on the growth of dissertations in eight research fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 371-383, August.
    7. Euro Pannacci & Selene Baratta & Beatrice Falcinelli & Michela Farneselli & Francesco Tei, 2022. "Mugwort ( Artemisia vulgaris L.) Aqueous Extract: Hormesis and Biostimulant Activity for Seed Germination and Seedling Growth in Vegetable Crops," Agriculture, MDPI, vol. 12(9), pages 1-10, August.
    8. Gianna S. Monti & Peter Filzmoser & Roland C. Deutsch, 2018. "A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions," Risk Analysis, John Wiley & Sons, vol. 38(10), pages 2073-2086, October.
    9. LonÄ arić, Željka & K. Hackenberger, Branimir, 2013. "Stage and age structured Aedes vexans and Culex pipiens (Diptera: Culicidae) climate-dependent matrix population model," Theoretical Population Biology, Elsevier, vol. 83(C), pages 82-94.
    10. Baty, Florent & Ritz, Christian & Charles, Sandrine & Brutsche, Martin & Flandrois, Jean-Pierre & Delignette-Muller, Marie-Laure, 2015. "A Toolbox for Nonlinear Regression in R: The Package nlstools," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i05).
    11. Lea A I Vaas & Johannes Sikorski & Victoria Michael & Markus Göker & Hans-Peter Klenk, 2012. "Visualization and Curve-Parameter Estimation Strategies for Efficient Exploration of Phenotype Microarray Kinetics," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-18, April.
    12. Fox, John & Leanage, Allison, 2016. "R and the Journal of Statistical Software," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i02).
    13. repec:jss:jstsof:33:i07 is not listed on IDEAS
    14. Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.
    15. Ádám Z Lendvai & Çağlar Akçay & Jenny Q Ouyang & Roslyn Dakin & Alice D Domalik & Prianka S St John & Mark Stanback & Ignacio T Moore & Frances Bonier, 2015. "Analysis of the Optimal Duration of Behavioral Observations Based on an Automated Continuous Monitoring System in Tree Swallows (Tachycineta bicolor): Is One Hour Good Enough?," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    16. Euro Pannacci & Marco Masi & Michela Farneselli & Francesco Tei, 2020. "Evaluation of Mugwort ( Artemisia vulgaris L.) Aqueous Extract as a Potential Bioherbicide to Control Amaranthus retroflexus L. in Maize," Agriculture, MDPI, vol. 10(12), pages 1-13, December.
    17. Christoph Kunz & Dominic J. Sturm & Markus Sökefeld & Roland Gerhards, 2017. "Weed suppression and early sugar beet development under different cover crop mulches," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 53(3), pages 187-193.
    18. Tibugari, Handsen & Chiduza, Cornelius & Mashingaidze, AB & Mabasa, S, 2022. "Reduced atrazine doses combined with sorghum aqueous extracts inhibit emergence and growth of weeds," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(03).
    19. Holst, Niels & Lang, Andreas & Lövei, Gabor & Otto, Mathias, 2013. "Increased mortality is predicted of Inachis io larvae caused by Bt-maize pollen in European farmland," Ecological Modelling, Elsevier, vol. 250(C), pages 126-133.
    20. Muhammad Javaid Akhter & Solvejg Kopp Mathiassen & Zelalem Eshetu Bekalu & Henrik Brinch-Pedersen & Per Kudsk, 2021. "Increased Activity of 5-Enolpyruvylshikimate-3-phosphate Synthase (EPSPS) Enzyme Describe the Natural Tolerance of Vulpia myuros to Glyphosate in Comparison with Apera spica-venti," Agriculture, MDPI, vol. 11(8), pages 1-15, July.
    21. Erickson, Richard A. & Cox, Stephen B. & Oates, Jessica L. & Anderson, Todd A. & Salice, Christopher J. & Long, Kevin R., 2014. "A Daphnia population model that considers pesticide exposure and demographic stochasticity," Ecological Modelling, Elsevier, vol. 275(C), pages 37-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:487-:d:432266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.