IDEAS home Printed from https://ideas.repec.org/a/fip/fedaer/y2000iq1p24-39nv.85no.1.html
   My bibliography  Save this article

Issues in hedging options positions

Author

Listed:
  • Saikat Nandi
  • Daniel F. Waggoner

Abstract

Many financial institutions hold derivative securities in their portfolios, and frequently these securities need to be hedged for extended periods of time. Failure to hedge properly can expose an institution to sudden swings in the values of derivatives, such as options, resulting from large, unanticipated changes in the levels or volatilities of the underlying asset. Understanding the basic techniques employed for hedging derivative securities and their advantages and pitfalls is therefore of crucial importance. ; This article examines the popular valuation model for options developed by Black and Scholes (1973) and Merton (1973). The model, while elegant from a theoretical perspective, is often fraught with problems when implemented in the real world. Nevertheless, because of its simplicity and tractability, the model is widely used by options traders and investors. ; The authors consider ways that users try to circumvent some of these problems-for example, with certain ad hoc pricing rules. Using the Standard and Poor's 500 index options market, the authors compare the hedging efficacies of various models. Their findings suggest that ad hoc rules do not always result in better hedges than a very simple and internally consistent implementation of the Black-Scholes-Merton model.

Suggested Citation

  • Saikat Nandi & Daniel F. Waggoner, 2000. "Issues in hedging options positions," Economic Review, Federal Reserve Bank of Atlanta, vol. 85(Q1), pages 24-39.
  • Handle: RePEc:fip:fedaer:y:2000:i:q1:p:24-39:n:v.85no.1
    as

    Download full text from publisher

    File URL: https://www.frbatlanta.org/-/media/documents/research/publications/economic-review/2000/vol85no1_nandi-waggoner.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    2. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Carr, Peter, 1998. "Randomization and the American Put," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    7. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    8. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    9. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    10. Ju, Nengjiu, 1998. "Pricing an American Option by Approximating Its Early Exercise Boundary as a Multipiece Exponential Function," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 627-646.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chris Becker & Daniel Fabbro, 2006. "Limiting Foreign Exchange Exposure through Hedging: The Australian Experience," RBA Research Discussion Papers rdp2006-09, Reserve Bank of Australia.
    2. Saikat Nandi & Daniel F. Waggoner, 2001. "The risks and rewards of selling volatility," Economic Review, Federal Reserve Bank of Atlanta, vol. 86(Q1), pages 31-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    4. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    5. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    6. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    7. Steven Heston & Saikat Nandi, 2000. "Derivatives on volatility: some simple solutions based on observables," FRB Atlanta Working Paper 2000-20, Federal Reserve Bank of Atlanta.
    8. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    9. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    10. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    11. Steven Heston & Saikat Nandi, 1998. "Preference-free option pricing with path-dependent volatility: A closed-form approach," FRB Atlanta Working Paper 98-20, Federal Reserve Bank of Atlanta.
    12. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.
    13. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    14. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    15. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    16. Robert Tompkins, 2001. "Implied volatility surfaces: uncovering regularities for options on financial futures," The European Journal of Finance, Taylor & Francis Journals, vol. 7(3), pages 198-230.
    17. Kai Detlefsen & Wolfgang Härdle & Rouslan Moro, 2007. "Empirical Pricing Kernels and Investor Preferences," SFB 649 Discussion Papers SFB649DP2007-017, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    18. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    19. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.
    20. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.

    More about this item

    Keywords

    Hedging (Finance); options;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedaer:y:2000:i:q1:p:24-39:n:v.85no.1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Meredith Rector (email available below). General contact details of provider: https://edirc.repec.org/data/frbatus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.