IDEAS home Printed from https://ideas.repec.org/a/fan/ecaqec/vhtml10.3280-ecag2021oa12775.html
   My bibliography  Save this article

Organic and conventional farms in the Basilicata region: A comparison of structural and economic variables using FADN data

Author

Listed:
  • Maria Assunta D?Oronzio
  • Carmela De Vivo

Abstract

Organic farming in Italy is growing fast thanks to an increased focus on environmental sustainability and consumer demand thus challenging the farmers to create new working models and territorial systems.Organic land in Basilicata is more than 21% of the regional UAA , an area that has more than doubled in size since 2015. This study compares Lucanian organic farming systems with conventional farming systems and their economic benefits and is based on 2019 FADN data made up of 24% organic farms. This study could help regional policy makers to design guidelines for the 2021-2027 programming period reinforcing the green growth strategy. In fact, agricultural policy continues to focus on environmental themes (Green Deal and Farm to fork), proposing new challenges to agricultural businesses who take advantage of the competitive advantages of new models and territorial systems.

Suggested Citation

  • Maria Assunta D?Oronzio & Carmela De Vivo, 2021. "Organic and conventional farms in the Basilicata region: A comparison of structural and economic variables using FADN data," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-17.
  • Handle: RePEc:fan:ecaqec:v:html10.3280/ecag2021oa12775
    as

    Download full text from publisher

    File URL: http://www.francoangeli.it/riviste/Scheda_Rivista.aspx?IDArticolo=70141&Tipo=ArticoloPDF
    Download Restriction: Single articles can be downloaded buying download credits, for info: https://www.francoangeli.it/DownloadCredit
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giuseppe Gargano & Francesco Licciardo & Milena Verrascina & Barbara Zanetti, 2021. "The Agroecological Approach as a Model for Multifunctional Agriculture and Farming towards the European Green Deal 2030—Some Evidence from the Italian Experience," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    2. L. E. Drinkwater & P. Wagoner & M. Sarrantonio, 1998. "Legume-based cropping systems have reduced carbon and nitrogen losses," Nature, Nature, vol. 396(6708), pages 262-265, November.
    3. Lakner, Sebastian & Breustedt, Gunnar, 2017. "Efficiency Analysis of Organic Farming Systems A Review of Concepts, Topics, Results and Conclusions," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 66(2), June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Contarato Pilon & Jordano Vaz Ambus & Elena Blume & Rodrigo Josemar Seminoti Jacques & José Miguel Reichert, 2023. "Citrus Orchards in Agroforestry, Organic, and Conventional Systems: Soil Quality and Functioning," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    2. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    3. Mousumi Ghosh & Waqar Ashiq & Hiteshkumar Bhogilal Vasava & Duminda N. Vidana Gamage & Prasanta K. Patra & Asim Biswas, 2021. "Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    4. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Jouan, Julia & Heinrichs, Julia & Britz, Wolfgang & Pahmeyer, Christoph, 2019. "Legume production challenged by European policy coherence: a case-study approach from French and German dairy farms," 172nd EAAE Seminar, May 28-29, 2019, Brussels, Belgium 289765, European Association of Agricultural Economists.
    6. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    7. Aravindakshan, Sreejith & Sherief, Aliyaru Kunju, 2010. "The wanted change against climate change: assessing the role of organic farming as an adaptation strategy," MPRA Paper 27205, University Library of Munich, Germany.
    8. Susanne Wiesner & Alison J. Duff & Ankur R. Desai & Kevin Panke-Buisse, 2020. "Increasing Dairy Sustainability with Integrated Crop–Livestock Farming," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    9. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    10. Tiziano Gomiero, 2013. "Alternative Land Management Strategies and Their Impact on Soil Conservation," Agriculture, MDPI, vol. 3(3), pages 1-20, August.
    11. Greene, Catherine R. & Kremen, Amy, 2003. "U.S. Organic Farming In 2000-2001: Adoption Of Certified Systems," Agricultural Information Bulletins 33769, United States Department of Agriculture, Economic Research Service.
    12. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    13. Aimee N. Hafla & Jennifer W. MacAdam & Kathy J. Soder, 2013. "Sustainability of US Organic Beef and Dairy Production Systems: Soil, Plant and Cattle Interactions," Sustainability, MDPI, vol. 5(7), pages 1-26, July.
    14. Jules Pretty & Rachel Hine, 2000. "The promising spread of sustainable agriculture in Asia," Natural Resources Forum, Blackwell Publishing, vol. 24(2), pages 107-121, May.
    15. Argiles, Josep M. & Brown, Nestor Duch, 2011. "A comparison of the economic and environmental performances of conventional and organic farming: evidence from financial statements," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 11(1), pages 1-18, January.
    16. Richard, Tom L., 2003. "Thinking Outside The Box: Building Materials And Other Products From Animal Processed Fiber," Agricultural Outlook Forum 2003 33179, United States Department of Agriculture, Agricultural Outlook Forum.
    17. Czyżewski, Bazyli & Kryszak, Łukasz, 2023. "Can a pursuit of productivity be reconciled with sustainable practices in small-scale farming? – Evidence from central and eastern Europe," MPRA Paper 117642, University Library of Munich, Germany, revised 31 May 2023.
    18. Venn, Rosemary & Burbi, Sara, 2023. "Agroforestry policy development in England: a question of knowledge transference," Land Use Policy, Elsevier, vol. 134(C).
    19. Muller, Adrian, 2009. "Benefits of Organic Agriculture as a Climate Change Adaptation and Mitigation Strategy for Developing Countries," RFF Working Paper Series dp-09-09-efd, Resources for the Future.
    20. Kiros Hadgu & Walter Rossing & Lammert Kooistra & Ariena Bruggen, 2009. "Spatial variation in biodiversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray, northern Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 83-97, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fan:ecaqec:v:html10.3280/ecag2021oa12775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rosato (email available below). General contact details of provider: http://www.francoangeli.it/riviste/sommario.aspx?IDRivista=214 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.