IDEAS home Printed from
   My bibliography  Save this article

Estimación del VaR mediante un modelo condicional multivariado bajo la hipótesis α-estable sub-Gaussiana. (A conditional approach to VaR with multivariate α-stable sub-Gaussian distributions)


  • Ramona Serrano Bautista

    () (Tecnológico de Monterrey, Guadalajara. Zapopan, Jalisco. México.)

  • Leovardo Mata Mata

    () (Tecnológico de Monterrey, Estado de México. México.)


El objetivo de esta investigación es proponer un modelo de volatilidad multivariable, el cual combina la propiedad de la distribución α-estable para ajustar colas pesadas con el modelo GARCH para capturar clúster de volatilidad. El supuesto inicial es que los rendimientos siguen una distribución sub-Gaussiana, la cual es un caso particular de las distribuciones estables multivariadas. El modelo GARCH propuesto se aplica en la estimación del VaR a un portafolio compuesto por cinco activos que cotizan en la Bolsa Mexicana de Valores (BMV). En particular, se compara el desempeño del modelo propuesto con la estimación del VaR obtenida bajo la hipótesis multivariada Gaussiana, t-Student y Cauchy durante el período de la crisis financiera de 2008.

Suggested Citation

  • Ramona Serrano Bautista & Leovardo Mata Mata, 2018. "Estimación del VaR mediante un modelo condicional multivariado bajo la hipótesis α-estable sub-Gaussiana. (A conditional approach to VaR with multivariate α-stable sub-Gaussian distributions)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 43-76, May.
  • Handle: RePEc:ere:journl:v:xxxvii:y:2018:i:1:p:43-76

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. B. N. Cheng & S. T. Rachev, 1995. "Multivariate Stable Futures Prices," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 133-153.
    2. repec:wly:jforec:v:36:y:2017:i:7:p:859-866 is not listed on IDEAS
    3. Byczkowski, T. & Nolan, J. P. & Rajput, B., 1993. "Approximation of Multidimensional Stable Densities," Journal of Multivariate Analysis, Elsevier, vol. 46(1), pages 13-31, July.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    5. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. J. Huston McCulloch, 2000. "Estimation of the Bivariate Stable Spectral Representation by the Projection Method," Computational Economics, Springer;Society for Computational Economics, vol. 16(1/2), pages 47-62, October.
    8. Svetlozar Rachev & Seonkoo Han, 2000. "Portfolio management with stable distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 341-352, April.
    9. repec:spr:compst:v:51:y:2000:i:2:p:341-352 is not listed on IDEAS
    10. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    11. Matteo Bonato, 2012. "Modeling fat tails in stock returns: a multivariate stable-GARCH approach," Computational Statistics, Springer, vol. 27(3), pages 499-521, September.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Distribución α-estable Sub-Gaussiana; GARCH multivariado estable Sub-Gaussiano; Valor en Riesgo;

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ere:journl:v:xxxvii:y:2018:i:1:p:43-76. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dora María Vega Facio). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.