IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v200y2025ics1366554525001814.html

Ridesharing user equilibrium model and its equivalent variational inequality formulation without monotonicity: A decomposition-based approximation approach

Author

Listed:
  • Zhou, Wenxin
  • Wang, Xiaolei
  • Yang, Jie
  • Zhang, Xiaoning

Abstract

Ridesharing (RS), with one driver serving a rider with similar route and schedule, has long been regarded as a charming paradigm for eco-friendly mobility. However, despite the rapid growth of shared mobility platforms, ridesharing demand remains relatively low. To design appropriate network-based policies to stimulate ridesharing, solving the traffic assignment problem in the presence of ridesharing services serves as the first and fundamental step. In a general network with both car owners and non-car owners, this paper models travelers’ mode, ridesharing partner and route choices at ridesharing user equilibrium. The model allows each RS driver to serve riders between any of her/his reachable origin–destination (OD) pairs, ensures each RS rider is served door to door by one RS driver, and endogenously determines the RS driver/rider demand and ridesharing price between each OD pair. The model is formulated into a non-monotone variational inequality (VI) problem. To solve it efficiently on large-scale networks, we propose a tailored Benders decomposition-based approximation approach, which decomposes the VI problem into a subproblem and a non-monotone master problem. The subproblem is transformed into a convex programming problem, which is further equivalent to a Beckmann formulation with side constraints. And for the non-monotone master problem, we apply the constant approximation scheme to approximate it by solving a convex quadratic programming problem with off-the-shelf solvers. The convergence of the proposed algorithm is theoretically established, and the correctness of the model and the efficiency of the algorithm are demonstrated through numerical experiments based on small to large scale networks.

Suggested Citation

  • Zhou, Wenxin & Wang, Xiaolei & Yang, Jie & Zhang, Xiaoning, 2025. "Ridesharing user equilibrium model and its equivalent variational inequality formulation without monotonicity: A decomposition-based approximation approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:transe:v:200:y:2025:i:c:s1366554525001814
    DOI: 10.1016/j.tre.2025.104140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525001814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nie, Yu (Marco), 2010. "A class of bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 73-89, January.
    2. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    3. Du, Muqing & Zhou, Jiankun & Li, Guoyuan & Tan, Heqing & Chen, Anthony, 2024. "A stochastic ridesharing user equilibrium model with origin-destination-based ride-matching strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    4. Xu, Huayu & Pang, Jong-Shi & Ordóñez, Fernando & Dessouky, Maged, 2015. "Complementarity models for traffic equilibrium with ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 161-182.
    5. William Chung & J. David Fuller, 2010. "Subproblem Approximation in Dantzig-Wolfe Decomposition of Variational Inequality Models with an Application to a Multicommodity Economic Equilibrium Model," Operations Research, INFORMS, vol. 58(5), pages 1318-1327, October.
    6. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    7. Di, Xuan & Ma, Rui & Liu, Henry X. & Ban, Xuegang (Jeff), 2018. "A link-node reformulation of ridesharing user equilibrium with network design," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 230-255.
    8. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    9. Hillel Bar-Gera, 2002. "Origin-Based Algorithm for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 36(4), pages 398-417, November.
    10. Wang, Xiaolei & Wang, Jun & Guo, Lei & Liu, Wei & Zhang, Xiaoning, 2021. "A convex programming approach for ridesharing user equilibrium under fixed driver/rider demand," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 33-51.
    11. Ma, Jie & Xu, Min & Meng, Qiang & Cheng, Lin, 2020. "Ridesharing user equilibrium problem under OD-based surge pricing strategy," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 1-24.
    12. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    13. Jing Gong & Brad N. Greenwood & Yiping (Amy) Song, 2023. "An Empirical Investigation of Ridesharing and New Vehicle Purchase," Manufacturing & Service Operations Management, INFORMS, vol. 25(3), pages 884-902, May.
    14. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    15. Li, Tongfei & Ge, Yao & Xiong, Jie & Xu, Min & Wu, Jianjun & Sun, Huijun, 2024. "Ridesharing user equilibrium model without the en-route transfer: An OD-based link-node formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    16. Yang, Hai & Wang, Xiaolei & Yin, Yafeng, 2012. "The impact of speed limits on traffic equilibrium and system performance in networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1295-1307.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Yao & Shlomo Bekhor, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Papers 2303.16595, arXiv.org, revised Dec 2023.
    2. Yao, Rui & Bekhor, Shlomo, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    3. Du, Muqing & Zhou, Jiankun & Li, Guoyuan & Tan, Heqing & Chen, Anthony, 2024. "A stochastic ridesharing user equilibrium model with origin-destination-based ride-matching strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    4. Li, Tongfei & Ge, Yao & Xiong, Jie & Xu, Min & Wu, Jianjun & Sun, Huijun, 2024. "Ridesharing user equilibrium model without the en-route transfer: An OD-based link-node formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    5. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    6. Wang, Xiaolei & Wang, Jun & Guo, Lei & Liu, Wei & Zhang, Xiaoning, 2021. "A convex programming approach for ridesharing user equilibrium under fixed driver/rider demand," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 33-51.
    7. Noruzoliaee, Mohamadhossein & Zou, Bo, 2022. "One-to-many matching and section-based formulation of autonomous ridesharing equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 72-100.
    8. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    9. Liu, Bingqing & Watling, David & Chow, Joseph Y.J., 2025. "An operation-agnostic stochastic user equilibrium model for mobility-on-demand networks with congestible capacities," European Journal of Operational Research, Elsevier, vol. 323(2), pages 504-524.
    10. Xingyuan Li & Jing Bai, 2021. "A Ridesharing Choice Behavioral Equilibrium Model with Users of Heterogeneous Values of Time," IJERPH, MDPI, vol. 18(3), pages 1-22, January.
    11. Noruzoliaee, Mohamadhossein & Zou, Bo & Zhou, Yan (Joann), 2021. "Truck platooning in the U.S. national road network: A system-level modeling approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    12. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    13. Ma, Jie & Meng, Qiang & Cheng, Lin & Liu, Zhiyuan, 2022. "General stochastic ridesharing user equilibrium problem with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 162-194.
    14. Sun, S. & Szeto, W.Y., 2021. "Multi-class stochastic user equilibrium assignment model with ridesharing: Formulation and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 203-227.
    15. Dawei Li & Yiping Liu & Yuchen Song & Zhenghao Ye & Dongjie Liu, 2022. "A Framework for Assessing Resilience in Urban Mobility: Incorporating Impact of Ridesharing," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    16. Tidswell, J. & Downward, A. & Thielen, C. & Raith, A., 2021. "Minimising emissions in traffic assignment with non-monotonic arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 70-90.
    17. Yi Cao & Shan Wang & Jinyang Li, 2021. "The Optimization Model of Ride-Sharing Route for Ride Hailing Considering Both System Optimization and User Fairness," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    18. Wang, Qianni & Feng, Liyang & Li, Jiayang & Xie, Jun & Nie, Yu (Marco), 2025. "Entropy maximization in multi-class traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    19. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    20. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:200:y:2025:i:c:s1366554525001814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.