IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v193y2025ics1366554524004617.html
   My bibliography  Save this article

Exploring spatiotemporal heterogeneity of urban green freight delivery parking based on new energy vehicle GPS data

Author

Listed:
  • Lu, Wenbo
  • Zhang, Yong
  • Xu, Jinhua
  • Yuan, Zheng
  • Li, Peikun
  • Zhang, Mingye
  • Vu, Hai L.

Abstract

To enhance the efficiency and sustainability of urban freight operations, China has initiated the Urban Green Freight Delivery (UGFD) project, which involves optimizing access control policies and introducing new energy vehicles. Identifying the parking trips of new energy vehicles and exploring the spatiotemporal patterns is crucial to actively promoting the optimal layout of temporary stops and the formulation of parking policies in the UGFD project. In this study, we aim to comprehend the spatiotemporal heterogeneity of parking for new energy vehicles both on roads (on-street) and within urban communities (off-street) for promoting the UGFD project. Its specific content includes: (1) proposing a method for identifying valid parking trips for the loading and unloading of goods based on trajectory data of UGFD new energy vehicles; and (2) mapping the identification results of valid parking trips onto communities and roads to analyze the spatiotemporal heterogeneity. Taking Suzhou, Jiangsu Province, China as an example, the identification results show that the established valid parking trips identification method can outperform state-of-the-art methods. The accuracy, precision, recall, and F1 value were found to be 0.957, 0.908, 0.937, and 0.922, respectively. Further examination of parking patterns indicates a bimodal temporal distribution of delivery demand, with peak activity occurring between 08:00–09:00 and between 14:00–17:00, with a higher delivery demand in the morning. Spatially, delivery demand was aggregated, while the parking time distribution of most delivery activities was normal. Additionally, the parking characteristics of communities and roads conformed to the ‘Rank–size rule’, suggesting that most delivery parking activities were concentrated in a few communities and roads. These findings can also be used in UGFD stop station utilization, travel time, arrival time prediction, and other related fields, all of which can further support relevant management departments in discovering abnormal delivery behaviors and reduce their negative impacts.

Suggested Citation

  • Lu, Wenbo & Zhang, Yong & Xu, Jinhua & Yuan, Zheng & Li, Peikun & Zhang, Mingye & Vu, Hai L., 2025. "Exploring spatiotemporal heterogeneity of urban green freight delivery parking based on new energy vehicle GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:transe:v:193:y:2025:i:c:s1366554524004617
    DOI: 10.1016/j.tre.2024.103870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524004617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zidong & Wang, Haotian & Liu, Xintao, 2024. "Mobility heterogeneity of urban freight areas: Geospatial evidence from shared logistics dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    2. Schmid, Joshua & Wang, Xiaokun (Cara) & Conway, Alison, 2018. "Commercial vehicle parking duration in New York City and its implications for planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 580-590.
    3. Zong, Fang & Yu, Ping & Tang, Jinjun & Sun, Xiao, 2019. "Understanding parking decisions with structural equation modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 408-417.
    4. Ghosh, Abhik & Basu, Banasri, 2019. "Universal City-size distributions through rank ordering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    5. David Guerrero & Laurent Proulhac, 2014. "Freight flows and urban hierarchy," Post-Print hal-01069903, HAL.
    6. Marcucci, Edoardo & Gatta, Valerio & Scaccia, Luisa, 2015. "Urban freight, parking and pricing policies: An evaluation from a transport providers’ perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 239-249.
    7. Demissie, Merkebe Getachew & Kattan, Lina, 2022. "Estimation of truck origin-destination flows using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    8. Tan, Kang Miao & Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Mansor, Muhamad & Teh, Jiashen & Guerrero, Josep M., 2023. "Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Laranjeiro, Patrícia F. & Merchán, Daniel & Godoy, Leonardo A. & Giannotti, Mariana & Yoshizaki, Hugo T.Y. & Winkenbach, Matthias & Cunha, Claudio B., 2019. "Using GPS data to explore speed patterns and temporal fluctuations in urban logistics: The case of São Paulo, Brazil," Journal of Transport Geography, Elsevier, vol. 76(C), pages 114-129.
    10. Basso, Franco & Cox, Tomás & Pezoa, Raúl & Maldonado, Tomás & Varas, Mauricio, 2024. "Characterizing last-mile freight transportation using mobile phone data: The case of Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    11. Yu, Zidong & Wang, Haotian & Liu, Xintao, 2024. "Unraveling intra-urban freight parking patterns: A data-driven geospatial study of shared logistics sector in Hong Kong," Journal of Transport Geography, Elsevier, vol. 117(C).
    12. Vidhi Patel & Mina Maleki & Mehdi Kargar & Jessica Chen & Hanna Maoh, 2022. "A cluster-driven classification approach to truck stop location identification using passive GPS data," Journal of Geographical Systems, Springer, vol. 24(4), pages 657-677, October.
    13. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Li, Jiangtao & Yang, Zhenzhen & Gao, Ziyou, 2022. "Identifying intercity freight trip ends of heavy trucks from GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Zhou, Xizhen & Ding, Xueqi & Yan, Jie & Ji, Yanjie, 2023. "Spatial heterogeneity of urban illegal parking behavior: A geographically weighted Poisson regression approach," Journal of Transport Geography, Elsevier, vol. 110(C).
    15. Wu, Jishi & Feng, Tao & Jia, Peng & Li, Gen, 2024. "Spatial allocation of heavy commercial vehicles parking areas through geo-fencing," Journal of Transport Geography, Elsevier, vol. 117(C).
    16. Kalahasthi, Lokesh Kumar & Sánchez-Díaz, Iván & Pablo Castrellon, Juan & Gil, Jorge & Browne, Michael & Hayes, Simon & Sentís Ros, Carles, 2022. "Joint modeling of arrivals and parking durations for freight loading zones: Potential applications to improving urban logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 307-329.
    17. Tao Wu & Huiqing Shen & Jianxin Qin & Longgang Xiang, 2021. "Extracting Stops from Spatio-Temporal Trajectories within Dynamic Contextual Features," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    18. Yang, Zhiwei & Chen, Xiaohong & Deng, Jihao & Li, Tianhao & Yuan, Quan, 2023. "Footprints of goods movements: Spatial heterogeneity of heavy-duty truck activities and its influencing factors in the urban context," Journal of Transport Geography, Elsevier, vol. 113(C).
    19. Davis, Brian A. & Figliozzi, Miguel A., 2013. "A methodology to evaluate the competitiveness of electric delivery trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 8-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jishi & Feng, Tao & Jia, Peng & Li, Gen, 2024. "Spatial allocation of heavy commercial vehicles parking areas through geo-fencing," Journal of Transport Geography, Elsevier, vol. 117(C).
    2. Amaya, Johanna & Encarnación, Trilce & Delgado-Lindeman, Maira, 2023. "Understanding Delivery Drivers’ Parking Preferences in Urban Freight Operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    3. Basso, Franco & Núñez, Matías & Paredes-Belmar, German & Pezoa, Raúl & Varas, Mauricio, 2024. "Estimation of stops of last-mile delivery vehicles: An application in the food industry in the city of Santiago de Chile," Journal of Transport Geography, Elsevier, vol. 116(C).
    4. Yu, Zidong & Wang, Haotian & Liu, Xintao, 2024. "Unraveling intra-urban freight parking patterns: A data-driven geospatial study of shared logistics sector in Hong Kong," Journal of Transport Geography, Elsevier, vol. 117(C).
    5. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Zhi, Danyue & Song, Dongdong & Chen, Yan & de Bok, Michiel & Tavasszy, Lóránt A. & Gao, Ziyou, 2023. "Uncovering and modeling the hierarchical organization of urban heavy truck flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    6. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Chen, Yan & Song, Dongdong & Zhi, Danyue & Wang, Yiyun & Gao, Ziyou, 2023. "Estimating intercity heavy truck mobility flows using the deep gravity framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Chen, Liao & Ma, Shoufeng & Li, Changlin & Yang, Yuance & Wei, Wei & Cui, Runbang, 2024. "A spatial–temporal graph-based AI model for truck loan default prediction using large-scale GPS trajectory data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    8. Clélia Lopez & Chuan-Lin Zhao & Stéphane Magniol & Nicolas Chiabaut & Ludovic Leclercq, 2019. "Microscopic Simulation of Cruising for Parking of Trucks as a Measure to Manage Freight Loading Zone," Sustainability, MDPI, vol. 11(5), pages 1-14, February.
    9. Kalahasthi, Lokesh Kumar & Sánchez-Díaz, Iván & Pablo Castrellon, Juan & Gil, Jorge & Browne, Michael & Hayes, Simon & Sentís Ros, Carles, 2022. "Joint modeling of arrivals and parking durations for freight loading zones: Potential applications to improving urban logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 307-329.
    10. He, Zhangyuan & Zhao, Pengjun & Xiao, Zuopeng & Huang, Xin & Li, Zhaoxiang & Kang, Tingting, 2024. "Exploring the distance decay in port hinterlands under port regionalization using truck GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    11. Caron, Benjamin & Holguín-Veras, José, 2022. "Receiver willingness to participate in off-hour service programs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 171-191.
    12. Vidhi Patel & Mina Maleki & Mehdi Kargar & Jessica Chen & Hanna Maoh, 2022. "A cluster-driven classification approach to truck stop location identification using passive GPS data," Journal of Geographical Systems, Springer, vol. 24(4), pages 657-677, October.
    13. Juan Guillermo Urzúa-Morales & Juan Pedro Sepulveda-Rojas & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Manuel Vargas, 2020. "Logistic Modeling of the Last Mile: Case Study Santiago, Chile," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    14. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    15. Roel M. Post & Paul Buijs & Michiel A. J. uit het Broek & Jose A. Lopez Alvarez & Nick B. Szirbik & Iris F. A. Vis, 2018. "A solution approach for deriving alternative fuel station infrastructure requirements," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 592-607, September.
    16. Tannaz Jahaniaghdam & Amir Reza Mamdoohi & Salman Aghidi Kheyrabadi & Mehdi Mehryar & Francesco Ciari, 2023. "Preferences for Alternative Fuel Trucks among International Transport Companies," World, MDPI, vol. 4(4), pages 1-21, November.
    17. Ermagun, Alireza & Stathopoulos, Amanda, 2018. "To bid or not to bid: An empirical study of the supply determinants of crowd-shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 468-483.
    18. Kim, Haena & Goodchild, Anne & Boyle, Linda Ng, 2021. "Empirical analysis of commercial vehicle dwell times around freight-attracting urban buildings in downtown Seattle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 320-338.
    19. Liu, Jianmiao & Li, Junyi & Chen, Yong & Lian, Song & Zeng, Jiaqi & Geng, Maosi & Zheng, Sijing & Dong, Yinan & He, Yan & Huang, Pei & Zhao, Zhijian & Yan, Xiaoyu & Hu, Qinru & Wang, Lei & Yang, Di & , 2023. "Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management," Applied Energy, Elsevier, vol. 331(C).
    20. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:193:y:2025:i:c:s1366554524004617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.