IDEAS home Printed from
   My bibliography  Save this article

Confidence interval estimation for path flow estimator


  • Chootinan, Piya
  • Chen, Anthony


The uncertainty of an origin–destination (O–D) trip table estimate is affected by two factors: (i) the multiplicity of solutions due to the underspecified nature of the problem, and (ii) the errors of traffic counts. In this paper, a confidence interval estimation procedure for path flow estimator (PFE) is developed for assessing the quality of O–D trip tables estimated from traffic counts. The confidence interval estimation consists of two parts: (i) a generalized demand scale (GDS) measure for quantifying the intrinsic underspecified nature of the O–D estimation problem at various spatial levels, and (ii) an error bound to quantify the contribution of input errors (traffic counts) to the estimation results. Numerical results using PFE as the O–D estimator show that the proposed confidence interval estimation procedure is able to separate the two sources of uncertainty in constructing the confidence intervals at various spatial levels. Simulation results also confirm that the proposed quality measure indeed contain the true estimates within the defined confidence intervals.

Suggested Citation

  • Chootinan, Piya & Chen, Anthony, 2011. "Confidence interval estimation for path flow estimator," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1680-1698.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:10:p:1680-1698
    DOI: 10.1016/j.trb.2011.07.001

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Yang, Hai & Zhou, Jing, 1998. "Optimal traffic counting locations for origin-destination matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 109-126, February.
    3. Bierlaire, Michel, 2002. "The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 837-850, November.
    4. Yang, Chao & Chen, Anthony, 2009. "Sensitivity analysis of the combined travel demand model with applications," European Journal of Operational Research, Elsevier, vol. 198(3), pages 909-921, November.
    5. Yang, Hai & Iida, Yasunori & Sasaki, Tsuna, 1991. "An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 25(5), pages 351-363, October.
    6. Sherali, Hanif D. & Sivanandan, R. & Hobeika, Antoine G., 1994. "A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes," Transportation Research Part B: Methodological, Elsevier, vol. 28(3), pages 213-233, June.
    7. Chen, Anthony & Chootinan, Piya & Recker, Will, 2009. "Norm approximation method for handling traffic count inconsistencies in path flow estimator," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 852-872, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    2. Ryu, Seungkyu & Chen, Anthony & Michael Zhang, H. & Recker, Will, 2014. "Path flow estimator for planning applications in small communities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 212-242.
    3. Simonelli, Fulvio & Marzano, Vittorio & Papola, Andrea & Vitiello, Iolanda, 2012. "A network sensor location procedure accounting for o–d matrix estimate variability," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1624-1638.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:10:p:1680-1698. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.