IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v106y2017icp433-446.html
   My bibliography  Save this article

Dynamic optimal real-time algorithm for signals (DORAS): Case of isolated roadway intersections

Author

Listed:
  • Wang, Xiubin Bruce
  • Cao, Xiaowei
  • Wang, Changjun

Abstract

This paper studies intersection signal control in which traffic arrivals from all approaches along with the queues are assumed known. The control policy minimizes the overall intersection delay by deciding the green intervals for signal phases dynamically as driven by real-time traffic but subject to a set of constraints such as min/max green time for each phase. This paper models intersection vehicle delay by assuming continuous vehicle arrival and departure, and presents the optimal condition for green signal switch. Prior to this work, there does not appear to have been a continuous model on optimal control applied to the general intersection. Two numerical algorithms are proposed: optimum based (DORAS) and queue-based heuristic (DORAS-Q) respectively. Numerical tests are conducted via discrete simulation using an actual intersection data covering peak, mid-day and mid-night hours, respectively. Comparison is conducted between actuated, DORAS, DORAS-Q and OPAC III. The tests show that the latter three methods all perform significantly better than the actuated.

Suggested Citation

  • Wang, Xiubin Bruce & Cao, Xiaowei & Wang, Changjun, 2017. "Dynamic optimal real-time algorithm for signals (DORAS): Case of isolated roadway intersections," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 433-446.
  • Handle: RePEc:eee:transb:v:106:y:2017:i:c:p:433-446
    DOI: 10.1016/j.trb.2017.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516301588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael C. Dunne & Renfrey B. Potts, 1964. "Algorithm for Traffic Control," Operations Research, INFORMS, vol. 12(6), pages 870-881, December.
    2. G. F. Newell & E. E. Osuna, 1969. "Properties of Vehicle-Actuated Signals: II. Two-Way Streets," Transportation Science, INFORMS, vol. 3(2), pages 99-125, May.
    3. Gordon F. Newell, 1969. "Properties of Vehicle-Actuated Signals: I. One-Way Streets," Transportation Science, INFORMS, vol. 3(1), pages 30-52, February.
    4. Suvrajeet Sen & K. Larry Head, 1997. "Controlled Optimization of Phases at an Intersection," Transportation Science, INFORMS, vol. 31(1), pages 5-17, February.
    5. Michael C. Dunne, 1967. "Traffic Delay at a Signalized Intersection with Binomial Arrivals," Transportation Science, INFORMS, vol. 1(1), pages 24-31, February.
    6. Newell, Gordon F., 1989. "Theory of highway traffic signals," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7zn2b9bc, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohajerpoor, Reza & Saberi, Meead & Ramezani, Mohsen, 2019. "Analytical derivation of the optimal traffic signal timing: Minimizing delay variability and spillback probability for undersaturated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 45-68.
    2. Zhou, Xuesong, 2017. "Recasting and optimizing intersection automation as a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound search approach in phase-time-traffic hypernetworkAuthor-N," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 479-506.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lloret-Batlle, Roger & Jayakrishnan, R., 2016. "Envy-minimizing pareto efficient intersection control with brokered utility exchanges under user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 22-42.
    2. Lo, Hong K., 1999. "A novel traffic signal control formulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 433-448, August.
    3. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    4. Bell, Michael G. H., 1995. "Stochastic user equilibrium assignment in networks with queues," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 125-137, April.
    5. Cassidy, Michael & Coifman, Benjamin, 1998. "Design Of A Machine Vision-based, Vehicle Actuated Traffic Signal Controller," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2rg0957h, Institute of Transportation Studies, UC Berkeley.
    6. Sadek, Bassel & Doig Godier, Jean & Cassidy, Michael J & Daganzo, Carlos F, 2022. "Traffic signal plans to decongest street grids," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 195-208.
    7. Yin, Yafeng & Liu, Henry X. & Laval, Jorge A. & Lu, Xiao-Yun & Li, Meng & Pilachowski, Joshua & Zhang, Wei-Bin, 2007. "Development of an Integrated Microscopic Traffic Simulation and Signal Timing Optimization Tool," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3r67f927, Institute of Transportation Studies, UC Berkeley.
    8. Lu, Ke & Du, Pingping & Cao, Jinde & Zou, Qiming & He, Tianjia & Huang, Wei, 2019. "A novel traffic signal split approach based on Explicit Model Predictive Control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 105-114.
    9. Hong K. Lo, 2001. "A Cell-Based Traffic Control Formulation: Strategies and Benefits of Dynamic Timing Plans," Transportation Science, INFORMS, vol. 35(2), pages 148-164, May.
    10. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    11. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    12. Gu, Weihua & Cassidy, Michael J. & Gayah, Vikash V. & Ouyang, Yanfeng, 2013. "Mitigating negative impacts of near-side bus stops on cars," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 42-56.
    13. Lo, Hong K. & Chang, Elbert & Chan, Yiu Cho, 2001. "Dynamic network traffic control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 721-744, September.
    14. Neda Mirzaeian & Soo-Haeng Cho & Alan Scheller-Wolf, 2021. "A Queueing Model and Analysis for Autonomous Vehicles on Highways," Management Science, INFORMS, vol. 67(5), pages 2904-2923, May.
    15. Fusco, G. & Bielli, M. & Cipriani, E. & Gori, S. & Nigro, M., 2013. "Signal settings synchronization and dynamic traffic modelling," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    16. Rinaldi, Marco, 2018. "Controllability of transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 381-406.
    17. Baykal-Gürsoy, M. & Xiao, W. & Ozbay, K., 2009. "Modeling traffic flow interrupted by incidents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 127-138, May.
    18. Newell, G. F., 1998. "The rolling horizon scheme of traffic signal control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 39-44, January.
    19. Lin Xiao & Hong Lo, 2015. "Combined Route Choice and Adaptive Traffic Control in a Day-to-day Dynamical System," Networks and Spatial Economics, Springer, vol. 15(3), pages 697-717, September.
    20. Rinaldi, Marco & Tampère, Chris M.J., 2015. "An extended coordinate descent method for distributed anticipatory network traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 107-131.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:106:y:2017:i:c:p:433-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.