IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v185y2024ics0965856424001678.html

Designing pedestrian zones within city center networks considering policy objective trade-offs

Author

Listed:
  • Oyama, Yuki
  • Murakami, Soichiro
  • Chikaraishi, Makoto
  • Parady, Giancarlos

Abstract

An idea key to human-centric city planning is the reclamation of urban spaces from vehicles and their redesign for human activities. Aligned with this concept, this study presents a framework for human-centric network design. The framework is developed based on a multi-objective optimization model that designs pedestrian zones within a city center network considering conflicting policy objectives. Design performance is evaluated through the interaction between the design and the behavior of network travelers. A vehicle–pedestrian multimodal network equilibrium assignment model is constructed to this end. To efficiently search for better designs, we also develop a hyper-heuristic based on the adaptive large neighborhood search algorithm that dynamically adjusts the probability of selecting operators for neighborhood search. The framework was applied to a city center network in Kawagoe City, Japan, where the conflict between vehicular and tourist pedestrian traffic has long been considered a major problem. Our algorithm successfully found a set of Pareto frontier solutions that clearly show the trade-off between conflicting objectives. A balanced network design among the frontier solutions improved pedestrian comfort by 64.7% while increasing vehicular travel time by only 3.8%. It would be ideal for municipalities to improve the pedestrian experience while maintaining current levels of convenience to drivers, but both issues must be weighed against severe road space constraints. Our approach can aid the discussion on this trade-off by providing a set of Pareto frontier solutions, as each frontier solution shows a different trade-off pattern and can be considered as a meaningful design alternative for policymakers.

Suggested Citation

  • Oyama, Yuki & Murakami, Soichiro & Chikaraishi, Makoto & Parady, Giancarlos, 2024. "Designing pedestrian zones within city center networks considering policy objective trade-offs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:transa:v:185:y:2024:i:c:s0965856424001678
    DOI: 10.1016/j.tra.2024.104119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424001678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Pel, Adam J. & Chaniotakis, Emmanouil, 2017. "Stochastic user equilibrium traffic assignment with equilibrated parking search routes," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 123-139.
    3. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    4. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
    5. Shirgaokar, Manish & Reynard, Darcy & Collins, Damian, 2021. "Using twitter to investigate responses to street reallocation during COVID-19: Findings from the U.S. and Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 300-312.
    6. Lam, William H.K. & Li, Zhi-Chun & Huang, Hai-Jun & Wong, S.C., 2006. "Modeling time-dependent travel choice problems in road networks with multiple user classes and multiple parking facilities," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 368-395, June.
    7. Basu, Rounaq & Sevtsuk, Andres, 2022. "How do street attributes affect willingness-to-walk? City-wide pedestrian route choice analysis using big data from Boston and San Francisco," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 1-19.
    8. Oyama, Yuki, 2024. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of visually perceived attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    9. Yuki Oyama, 2022. "Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach," Papers 2204.01215, arXiv.org, revised Jan 2023.
    10. Bagloee, Saeed Asadi & (Avi) Ceder, Avishai & Sarvi, Majid & Asadi, Mohsen, 2019. "Is it time to go for no-car zone policies? Braess Paradox Detection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 251-264.
    11. Zhang, Xiaoning & Yang, Hai, 2004. "The optimal cordon-based network congestion pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 517-537, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parady, Giancarlos & Chikaraishi, Makoto & Oyama, Yuki, 2025. "A walker's paradise ain't a driver's hell: Evaluating the causal effect of temporary road pedestrianization on traffic conditions of surrounding roads," Journal of Transport Geography, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuki Oyama, 2023. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of locally perceived attributes," Papers 2307.08646, arXiv.org.
    2. Parady, Giancarlos & Chikaraishi, Makoto & Oyama, Yuki, 2025. "A walker's paradise ain't a driver's hell: Evaluating the causal effect of temporary road pedestrianization on traffic conditions of surrounding roads," Journal of Transport Geography, Elsevier, vol. 127(C).
    3. Oyama, Yuki, 2024. "Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of visually perceived attributes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    4. Hung Tran & Tien Mai & Minh Ha Hoang, 2025. "Constrained Recursive Logit for Route Choice Analysis," Papers 2509.01595, arXiv.org.
    5. Rodriguez-Roman, Daniel & Ritchie, Stephen G., 2020. "Surrogate-based optimization for multi-objective toll design problems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 485-503.
    6. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    7. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    8. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot, 2024. "Modeling shared parking services at spatially correlated locations through a weibit-based combined destination and parking choice equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    9. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    10. Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    11. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    12. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    13. Zhang, Xinying & Pitera, Kelly & Wang, Yuanqing, 2024. "Exploring parking choices under the coexistence of autonomous and conventional vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    14. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    15. Tingxin Wen & Haoting Meng, 2025. "Time-Dependent Multi-Center Semi-Open Heterogeneous Fleet Path Optimization and Charging Strategy," Mathematics, MDPI, vol. 13(7), pages 1-27, March.
    16. Wang, Entai & Yuan, Yin & Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Gao, Ziyou, 2025. "Real-time train rescheduling optimization with combined cross-line strategies for urban rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 201(C).
    17. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    18. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    19. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    20. Wu, Yuehui & Fang, Hui & Qureshi, Ali Gul & Yamada, Tadashi, 2025. "Capacitated hub location routing problem with time windows and stochastic demands for the design of intra-city express systems," European Journal of Operational Research, Elsevier, vol. 326(2), pages 255-269.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:185:y:2024:i:c:s0965856424001678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.