IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v134y2020icp152-163.html
   My bibliography  Save this article

Spatial risk modelling of behavioural hotspots: Risk-aware path planning for autonomous vehicles

Author

Listed:
  • Ryan, Cian
  • Murphy, Finbarr
  • Mullins, Martin

Abstract

Autonomous vehicles (AVs) are expected to considerably improve road safety. That said, accident risk will continue to inflict societal costs. The ability to manage and measure these risks is fundamental to ensure societal acceptance and public adoption of AVs. In particular, the ability to quantitatively compare the safety of AVs relative to human drivers is crucial. Managing risk exposures through driving operational design domains (ODD) will also become prevalent. Ultimately, the deployment of AVs will hinge on the premise that they are safer than humans. In this paper, we posit a methodology to quantitatively evaluate AV risks and minimise their risk exposure once they are publically available. Two contributions are offered. First, we provide a proactive means of evaluating AV risks based on driving behaviour and safety-critical events. This offers statistically meaningful comparisons between humans and AVs given the limitation of current historical data. Second, we propose a novel risk-aware path planning methodology for AVs based on telematics behavioural data. Driving data from a cohort of young human drivers over roughly 270,000 km in Ireland is used to demonstrate the posited methodology. An unsupervised geostatistical tool called Kernel Density Estimation (KDE) is used to identify “behavioural hotspots” and the risk exposure at each edge or road segment is modelled. The results are incorporated into a path planning algorithm to find safe route paths for AVs, minimising risk exposures. In addition, Self-Organising Maps (SOM) are employed to identify similar risk groups and individual spatial risk patterns are considered.

Suggested Citation

  • Ryan, Cian & Murphy, Finbarr & Mullins, Martin, 2020. "Spatial risk modelling of behavioural hotspots: Risk-aware path planning for autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 152-163.
  • Handle: RePEc:eee:transa:v:134:y:2020:i:c:p:152-163
    DOI: 10.1016/j.tra.2020.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419308341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    2. Vinayak V Dixit & Sai Chand & Divya J Nair, 2016. "Autonomous Vehicles: Disengagements, Accidents and Reaction Times," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    3. Kalra, Nidhi & Paddock, Susan M., 2016. "Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 182-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijian Wang & Jianpeng Yang & Qiang Zhang & Li Wang, 2022. "Risk-Aware Travel Path Planning Algorithm Based on Reinforcement Learning during COVID-19," Sustainability, MDPI, vol. 14(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cian Ryan & Finbarr Murphy & Martin Mullins, 2019. "Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1125-1140, May.
    2. Jie Min & Yili Hong & Caleb B. King & William Q. Meeker, 2022. "Reliability analysis of artificial intelligence systems using recurrent events data from autonomous vehicles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 987-1013, August.
    3. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    4. Andrea Bertolini & Massimo Riccaboni, 2021. "Grounding the case for a European approach to the regulation of automated driving: the technology-selection effect of liability rules," European Journal of Law and Economics, Springer, vol. 51(2), pages 243-284, April.
    5. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Yueqi Mao & Qiang Mei & Peng Jing & Ye Zha & Ying Xue & Jiahui Huang & Danning Shao & Pan Luo, 2022. "Factors Affecting the Parental Intention of Using AVs to Escort Children: An Integrated SEM–Hybrid Choice Model Approach," Sustainability, MDPI, vol. 14(18), pages 1-21, September.
    7. Blume, Maximilian & Oberländer, Anna Maria & Röglinger, Maximilian & Rosemann, Michael & Wyrtki, Katrin, 2020. "Ex ante assessment of disruptive threats: Identifying relevant threats before one is disrupted," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Yaxin Fan & Xinyan Zhu & Bing She & Wei Guo & Tao Guo, 2018. "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    9. Wang, Cheng & Wang, Gang & Guo, Ziru & Dai, Lingjun & Liu, Hongyu & Li, Yufeng & Chen, Hao & Zhao, Yongxiang & Zhang, Yanan & Cheng, Hai, 2020. "Effects of land-use change on the distribution of the wintering red-crowned crane (Grus japonensis) in the coastal area of northern Jiangsu Province, China," Land Use Policy, Elsevier, vol. 90(C).
    10. Mert Ersen & Ali Hakan Büyüklü & Semra Taşabat Erpolat, 2021. "Analysis of Fatal and Injury Traffic Accidents in Istanbul Sarıyer District with Spatial Statistics Methods," Sustainability, MDPI, vol. 13(19), pages 1-39, October.
    11. Qing Ye & Yi Li & Wenzhe Shen & Zhaoze Xuan, 2023. "Division and Analysis of Accident-Prone Areas near Highway Ramps Based on Spatial Autocorrelation," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    12. Peng Liu & Run Yang & Zhigang Xu, 2019. "How Safe Is Safe Enough for Self‐Driving Vehicles?," Risk Analysis, John Wiley & Sons, vol. 39(2), pages 315-325, February.
    13. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    14. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    15. Tianzheng Xiao & Huapu Lu & Jianyu Wang & Katrina Wang, 2021. "Predicting and Interpreting Spatial Accidents through MDLSTM," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    16. Winston, Clifford & Karpilow, Quentin, 2017. "A New Route to Increasing Economic Growth: Reducing Highway Congestion with Autonomous Vehicles," Working Papers 03323, George Mason University, Mercatus Center.
    17. Delso, Javier & Martín, Belén & Ortega, Emilio, 2018. "A new procedure using network analysis and kernel density estimations to evaluate the effect of urban configurations on pedestrian mobility. The case study of Vitoria –Gasteiz," Journal of Transport Geography, Elsevier, vol. 67(C), pages 61-72.
    18. Ke Nie & Zhensheng Wang & Qingyun Du & Fu Ren & Qin Tian, 2015. "A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    19. Zoltan Ferenc Magosi & Christoph Wellershaus & Viktor Roland Tihanyi & Patrick Luley & Arno Eichberger, 2022. "Evaluation Methodology for Physical Radar Perception Sensor Models Based on On-Road Measurements for the Testing and Validation of Automated Driving," Energies, MDPI, vol. 15(7), pages 1-20, March.
    20. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:134:y:2020:i:c:p:152-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.