IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i20p9102-d1503087.html
   My bibliography  Save this article

Modeling the Causes of Urban Traffic Crashes: Accounting for Spatiotemporal Instability in Cities

Author

Listed:
  • Hongwen Xia

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
    Research Institute of Highway Ministry of Transport, Beijing 100088, China
    Key Laboratory of Operation Safety Technology on Transport Vehicles, Beijing 100088, China)

  • Rengkui Liu

    (School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Wei Zhou

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    Key Laboratory of Operation Safety Technology on Transport Vehicles, Beijing 100088, China)

  • Wenhui Luo

    (Research Institute of Highway Ministry of Transport, Beijing 100088, China
    Key Laboratory of Operation Safety Technology on Transport Vehicles, Beijing 100088, China)

Abstract

Traffic crashes have become one of the key public health issues, triggering significant apprehension among citizens and urban authorities. However, prior studies have often been limited by their inability to fully capture the dynamic and complex nature of spatiotemporal instability in urban traffic crashes, typically focusing on static or purely spatial effects. Addressing this gap, our study employs a novel methodological framework that integrates an Integrated Nested Laplace Approximation (INLA)-based Stochastic Partial Differential Equation (SPDE) model with spatially adaptive graph structures, which enables the effective handling of vast and intricate geospatial data while accounting for spatiotemporal instability. This approach represents a significant advancement over conventional models, which often fail to account for the fluid interplay between time-varying weather conditions, geographical attributes, and crash severity. We applied this methodology to analyze traffic crashes across three major U.S. cities—New York, Los Angeles, and Houston—using comprehensive crash data from 2016 to 2019. Our findings reveal city-specific disparities in the factors influencing severe traffic crashes, which are defined as incidents resulting in at least one person sustaining serious injury or death. Despite some universal trends, such as the risk-enhancing effect of cold weather and pedestrian crossings, we find marked differences across cities in relation to factors like temperature, precipitation, and the presence of certain traffic facilities. Additionally, the adjustment observed in the spatiotemporal standard deviations, with values such as 0.85 for New York and 0.471 for Los Angeles, underscores the varying levels of annual temporal instability across cities, indicating that the fluctuation in crash severity factors over time differs markedly among cities. These results underscore the limitations of traditional modeling approaches, demonstrating the superiority of our spatiotemporal method in capturing the heterogeneity of urban traffic crashes. This work has important policy implications, suggesting a need for tailored, location-specific strategies to improve traffic safety, thereby aiding authorities in better resource allocation and strategic planning.

Suggested Citation

  • Hongwen Xia & Rengkui Liu & Wei Zhou & Wenhui Luo, 2024. "Modeling the Causes of Urban Traffic Crashes: Accounting for Spatiotemporal Instability in Cities," Sustainability, MDPI, vol. 16(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9102-:d:1503087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/20/9102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/20/9102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    2. Huang, Helai & Song, Bo & Xu, Pengpeng & Zeng, Qiang & Lee, Jaeyoung & Abdel-Aty, Mohamed, 2016. "Macro and micro models for zonal crash prediction with application in hot zones identification," Journal of Transport Geography, Elsevier, vol. 54(C), pages 248-256.
    3. Huang, Yuan & Wang, Xiaoguang & Patton, David, 2018. "Examining spatial relationships between crashes and the built environment: A geographically weighted regression approach," Journal of Transport Geography, Elsevier, vol. 69(C), pages 221-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Peijie & Chen, Tianyi & Diew Wong, Yiik & Meng, Xianghai & Wang, Xueqin & Liu, Wei, 2023. "Exploring key spatio-temporal features of crash risk hot spots on urban road network: A machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    2. Ghadiri, Mehdi & Rassafi, Amir Abbas & Mirbaha, Babak, 2019. "The effects of traffic zoning with regular geometric shapes on the precision of trip production models," Journal of Transport Geography, Elsevier, vol. 78(C), pages 150-159.
    3. Yaxin Fan & Xinyan Zhu & Bing She & Wei Guo & Tao Guo, 2018. "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    4. Qing Ye & Yi Li & Wenzhe Shen & Zhaoze Xuan, 2023. "Division and Analysis of Accident-Prone Areas near Highway Ramps Based on Spatial Autocorrelation," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    5. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    6. Keke Zhang & Shaohua Wang & Chengcheng Song & Sinan Zhang & Xia Liu, 2024. "Spatiotemporal Heterogeneity Analysis of Provincial Road Traffic Accidents and Its Influencing Factors in China," Sustainability, MDPI, vol. 16(17), pages 1-17, August.
    7. Tianzheng Xiao & Huapu Lu & Jianyu Wang & Katrina Wang, 2021. "Predicting and Interpreting Spatial Accidents through MDLSTM," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    8. Ke Nie & Zhensheng Wang & Qingyun Du & Fu Ren & Qin Tian, 2015. "A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    9. Antonio Palazón-Bru & María José Prieto-Castelló & David Manuel Folgado-de la Rosa & Ana Macanás-Martínez & Emma Mares-García & María de los Ángeles Carbonell-Torregrosa & Vicente Francisco Gil-Guillé, 2020. "Development, and Internal, and External Validation of a Scoring System to Predict 30-Day Mortality after Having a Traffic Accident Traveling by Private Car or Van: An Analysis of 164,790 Subjects and ," IJERPH, MDPI, vol. 17(24), pages 1-13, December.
    10. Ahtasham Gul & Muhammad Mohsin & Muhammad Adil & Mansoor Ali, 2021. "A modified truncated distribution for modeling the heavy tail, engineering and environmental sciences data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-24, April.
    11. Jianhua Ni & Tianlu Qian & Changbai Xi & Yikang Rui & Jiechen Wang, 2016. "Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis," IJERPH, MDPI, vol. 13(8), pages 1-13, August.
    12. Peng, Qiao & Bakkar, Yassine & Wu, Liangpeng & Liu, Weilong & Kou, Ruibing & Liu, Kailong, 2024. "Transportation resilience under Covid-19 Uncertainty: A traffic severity analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    13. Bao, Jie & Yang, Zhao & Zeng, Weili & Shi, Xiaomeng, 2021. "Exploring the spatial impacts of human activities on urban traffic crashes using multi-source big data," Journal of Transport Geography, Elsevier, vol. 94(C).
    14. Eleftheria Kontou & Noreen McDonald, 2021. "Associating ridesourcing with road safety outcomes: Insights from Austin, Texas," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    15. Kamat, Shlok & Mukherjee, Satyam & Jain, Tarun, 2025. "Network centralities and traffic safety in transportation networks: Evidence from the Amtrak railways," Journal of Transport Geography, Elsevier, vol. 126(C).
    16. Jonathan Stiles & Yuchen Li & Harvey J Miller, 2022. "How does street space influence crash frequency? An analysis using segmented street view imagery," Environment and Planning B, , vol. 49(9), pages 2467-2483, November.
    17. Puji Adiatna Nadi & AbdulKader Murad, 2019. "Modelling Sustainable Urban Transport Performance in the Jakarta city Region: A GIS Approach," Sustainability, MDPI, vol. 11(7), pages 1-28, March.
    18. Cláudia A. Soares Machado & Harmi Takiya & Charles Lincoln Kenji Yamamura & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2020. "Placement of Infrastructure for Urban Electromobility: A Sustainable Approach," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    19. Zhensheng Wang & Ke Nie, 2019. "Measuring Spatial Patterns of Health Care Facilities and Their Relationships with Hypertension Inpatients in a Network-Constrained Urban System," IJERPH, MDPI, vol. 16(17), pages 1-22, September.
    20. Sabogal-Cardona, Orlando & Dávila, Julio D. & Oviedo, Daniel, 2025. "Lycra and guardian angels: Can leisure cycling induce travel behaviour changes?," Journal of Transport Geography, Elsevier, vol. 124(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:20:p:9102-:d:1503087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.