IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v66y2021ics0160791x21001433.html
   My bibliography  Save this article

Sociotechnical alignment in biomedicine: The 3D bioprinting market beyond technology convergence

Author

Listed:
  • Bicudo, Edison
  • Faulkner, Alex
  • Li, Phoebe

Abstract

The nature of hybrid technologies has been frequently interpreted with the concept of technology convergence. However, this concept tends to highlight only technical aspects of technology and market evolution. In order to provide a more comprehensive picture, the concept of sociotechnical alignment is explored here.

Suggested Citation

  • Bicudo, Edison & Faulkner, Alex & Li, Phoebe, 2021. "Sociotechnical alignment in biomedicine: The 3D bioprinting market beyond technology convergence," Technology in Society, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:teinso:v:66:y:2021:i:c:s0160791x21001433
    DOI: 10.1016/j.techsoc.2021.101668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X21001433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2021.101668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karvonen, Matti & Kässi, Tuomo, 2013. "Patent citations as a tool for analysing the early stages of convergence," Technological Forecasting and Social Change, Elsevier, vol. 80(6), pages 1094-1107.
    2. Marisela Rodríguez-Salvador & Rosa María Rio-Belver & Gaizka Garechana-Anacabe, 2017. "Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-22, June.
    3. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    4. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    5. Rosenberg, Nathan, 1963. "Technological Change in the Machine Tool Industry, 1840–1910," The Journal of Economic History, Cambridge University Press, vol. 23(4), pages 414-443, December.
    6. Brian Salter & Yinhua Zhou & Saheli Datta, 2017. "Governing new global health-care markets: the case of stem cell treatments," New Political Economy, Taylor & Francis Journals, vol. 22(1), pages 76-91, January.
    7. Jeong, Seongkyoon, 2014. "Strategic collaboration of R&D entities for technology convergence: Exploring organizational differences within the triple helix," Journal of Management & Organization, Cambridge University Press, vol. 20(2), pages 227-249, March.
    8. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    9. Yun Jong Kim, 2017. "A Study on the Status and Supporting Strategy of National R&D Programs related to the Convergence Technology in Korea," Proceedings of International Academic Conferences 4607798, International Institute of Social and Economic Sciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolade, Oluwaseun & Adegbile, Abiodun & Sarpong, David, 2022. "Can university-industry-government collaborations drive a 3D printing revolution in Africa? A triple helix model of technological leapfrogging in additive manufacturing," Technology in Society, Elsevier, vol. 69(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
    2. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    4. Jie Liu, 2024. "“Divergent” cross-domain stretching for technology fusion: validating the knowledge partition search model using patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3023-3043, June.
    5. Seongkyoon Jeong & Jong-Chan Kim & Jae Young Choi, 2015. "Technology convergence: What developmental stage are we in?," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 841-871, September.
    6. Sick, Nathalie & Preschitschek, Nina & Leker, Jens & Bröring, Stefanie, 2019. "A new framework to assess industry convergence in high technology environments," Technovation, Elsevier, vol. 84, pages 48-58.
    7. Nicola Melluso & Andrea Bonaccorsi & Filippo Chiarello & Gualtiero Fantoni, 2021. "Rapid detection of fast innovation under the pressure of COVID-19," Papers 2102.00197, arXiv.org.
    8. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    9. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    10. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    11. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    12. Chen Zhu & Kazuyuki Motohashi, 2023. "Government R&D spending as a driving force of technology convergence: a case study of the Advanced Sequencing Technology Program," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3035-3065, May.
    13. Qiang Gao & Man Jiang, 2024. "Exploring technology fusion by combining latent Dirichlet allocation with Doc2vec: a case of digital medicine and machine learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4043-4070, July.
    14. Lee, Hyunmin, 2023. "Converging technology to improve firm innovation competencies and business performance: Evidence from smart manufacturing technologies," Technovation, Elsevier, vol. 123(C).
    15. Lai, I-Chun & Su, Hsin-Ning, 2024. "Knowledge spectrum explored: Understanding source-recipient interactions and their influence on technology convergence," Technovation, Elsevier, vol. 133(C).
    16. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    17. Na Liu & Jianqi Mao & Jiancheng Guan, 2020. "Knowledge convergence and organization innovation: the moderating role of relational embeddedness," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1899-1921, December.
    18. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    19. Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
    20. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:66:y:2021:i:c:s0160791x21001433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.