IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Error covariance matrix estimation using ridge estimator

  • Luo, June
  • Kulasekera, K.B.
Registered author(s):

    This article considers sparse covariance matrix estimation of high dimension. In contrast to the existing methods which are based on the residual estimation from least squares estimator, we utilize residuals from ridge estimator with the adaptive thresholding technique to estimate the error covariance matrix in high dimensional factor model. By obtaining the explicit convergence rates of the ridge estimator under regularity conditions, we formulated our thresholding estimator of the true covariance matrix. Our thresholding estimator can be applied to more scenarios and is shown to have comparable rate of convergence to Fan et al. (2011).

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212003483
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 83 (2013)
    Issue (Month): 1 ()
    Pages: 257-264

    as
    in new window

    Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:257-264
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    2. Luo, June, 2010. "The discovery of mean square error consistency of a ridge estimator," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 343-347, March.
    3. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    4. Shao, Jun & Chow, Shein-Chung, 2007. "Variable screening in predicting clinical outcome with high-dimensional microarrays," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1529-1538, September.
    5. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    6. Luo, June, 2012. "Asymptotic efficiency of ridge estimator in linear and semiparametric linear models," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 58-62.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:257-264. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.