IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i10p1768-1776.html
   My bibliography  Save this article

Kac’s rescaling for jump-telegraph processes

Author

Listed:
  • López, Oscar
  • Ratanov, Nikita

Abstract

We present limit theorems for an asymmetric telegraph process with drift and jumps under different rescaling conditions. The explicit formulae for the related characteristic functions are derived by solving a Cauchy problem for the respective hyperbolic system.

Suggested Citation

  • López, Oscar & Ratanov, Nikita, 2012. "Kac’s rescaling for jump-telegraph processes," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1768-1776.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1768-1776
    DOI: 10.1016/j.spl.2012.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521200199X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikita Ratanov, 2007. "A jump telegraph model for option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 575-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikita Ratanov, 2021. "Ornstein-Uhlenbeck Processes of Bounded Variation," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 925-946, September.
    2. Oscar Lopez & Gerardo E. Oleaga & Alejandra Sanchez, 2019. "Jump-telegraph models for the short rate: pricing and convexity adjustments of zero coupon bonds," Papers 1901.02995, arXiv.org.
    3. Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita Ratanov & Mikhail Turov, 2023. "On Local Time for Telegraph Processes," Mathematics, MDPI, vol. 11(4), pages 1-12, February.
    2. Alessandro De Gregorio & Stefano Iacus, 2007. "Change point estimation for the telegraph process observed at discrete times," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1053, Universitá degli Studi di Milano.
    3. Antonio Di Crescenzo & Barbara Martinucci, 2013. "On the Generalized Telegraph Process with Deterministic Jumps," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 215-235, March.
    4. Antonio Crescenzo & Barbara Martinucci & Paola Paraggio & Shelemyahu Zacks, 2021. "Some Results on the Telegraph Process Confined by Two Non-Standard Boundaries," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 837-858, September.
    5. Anatoliy A. Pogorui & Anatoliy Swishchuk & Ramón M. Rodríguez-Dagnino, 2021. "Transformations of Telegraph Processes and Their Financial Applications," Risks, MDPI, vol. 9(8), pages 1-21, August.
    6. Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
    7. López, Oscar & Oleaga, Gerardo & Sánchez, Alejandra, 2021. "Markov-modulated jump-diffusion models for the short rate: Pricing of zero coupon bonds and convexity adjustment," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    8. Nikita Ratanov, 2021. "Ornstein-Uhlenbeck Processes of Bounded Variation," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 925-946, September.
    9. Ratanov, Nikita, 2014. "On piecewise linear processes," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 60-67.
    10. Nikita Ratanov & Alexander Melnikov, 2007. "On Financial Markets Based on Telegraph Processes," Papers 0712.3428, arXiv.org.
    11. Nikita Ratanov, 2016. "Option Pricing Under Jump-Diffusion Processes with Regime Switching," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 829-845, September.
    12. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    13. Alessandro Gregorio & Stefano Iacus, 2008. "Parametric estimation for the standard and geometric telegraph process observed at discrete times," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 249-263, October.
    14. Nikita Ratanov, 2005. "Quantil Hedging for telegraph markets and its applications to a pricing of equity-linked life insurance contracts," Borradores de Investigación 3410, Universidad del Rosario.
    15. Ratanov, Nikita, 2015. "Hypo-exponential distributions and compound Poisson processes with alternating parameters," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 71-78.
    16. Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.
    17. De Gregorio, Alessandro & Macci, Claudio, 2012. "Large deviation principles for telegraph processes," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1874-1882.
    18. Nikita Ratanov, 2022. "Kac-Ornstein-Uhlenbeck Processes: Stationary Distributions and Exponential Functionals," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2703-2721, December.
    19. Nikita Ratanov, 2015. "Telegraph Processes with Random Jumps and Complete Market Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 677-695, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1768-1776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.