IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i9p1365-1369.html
   My bibliography  Save this article

Multivariate copulas, quasi-copulas and lattices

Author

Listed:
  • Fernández-Sánchez, Juan
  • Nelsen, Roger B.
  • Úbeda-Flores, Manuel

Abstract

We investigate some properties of the partially ordered sets of multivariate copulas and quasi-copulas. Whereas the set of bivariate quasi-copulas is a complete lattice, which is order-isomorphic to the Dedekind-MacNeille completion of the set of bivariate copulas, we show that this is not the case in higher dimensions.

Suggested Citation

  • Fernández-Sánchez, Juan & Nelsen, Roger B. & Úbeda-Flores, Manuel, 2011. "Multivariate copulas, quasi-copulas and lattices," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1365-1369, September.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:9:p:1365-1369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211001350
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alsina, Claudi & Nelsen, Roger B. & Schweizer, Berthold, 1993. "On the characterization of a class of binary operations on distribution functions," Statistics & Probability Letters, Elsevier, vol. 17(2), pages 85-89, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio Durante & Juan Fernández-Sánchez & Wolfgang Trutschnig & Manuel Úbeda-Flores, 2020. "On the Size of Subclasses of Quasi-Copulas and Their Dedekind–MacNeille Completion," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
    2. Jonathan Ansari & Eva Lutkebohmert & Ariel Neufeld & Julian Sester, 2022. "Improved Robust Price Bounds for Multi-Asset Derivatives under Market-Implied Dependence Information," Papers 2204.01071, arXiv.org, revised Sep 2023.
    3. Benth Fred Espen & Nunno Giulia Di & Schroers Dennis, 2022. "A topological proof of Sklar’s theorem in arbitrary dimensions," Dependence Modeling, De Gruyter, vol. 10(1), pages 22-28, January.
    4. Nelsen, Roger B. & Úbeda-Flores, Manuel, 2012. "How close are pairwise and mutual independence?," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1823-1828.
    5. repec:bpj:demode:v:6:y:2018:i:1:p:139-155:n:9 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    2. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2011. "Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes," Post-Print hal-00539032, HAL.
    3. Murray D. Smith, 2005. "Using Copulas to Model Switching Regimes with an Application to Child Labour," The Economic Record, The Economic Society of Australia, vol. 81(s1), pages 47-57, August.
    4. Genest, C. & Quesada Molina, J. J. & Rodriguez Lallena, J. A. & Sempi, C., 1999. "A Characterization of Quasi-copulas," Journal of Multivariate Analysis, Elsevier, vol. 69(2), pages 193-205, May.
    5. Quesada Molina, Jose Juan & Sempi, Carlo, 2005. "Discrete quasi-copulas," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 27-41, August.
    6. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2017. "My introduction to copulas: An interview with Roger Nelsen," Dependence Modeling, De Gruyter, vol. 5(1), pages 88-98, January.
    7. Stefan Aulbach & Verena Bayer & Michael Falk, 2012. "A multivariate piecing-together approach with an application to operational loss data," Papers 1205.1617, arXiv.org.
    8. Nelsen, Roger B. & Úbeda-Flores, Manuel, 2012. "How close are pairwise and mutual independence?," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1823-1828.
    9. Aulbach, Stefan & Falk, Michael & Hofmann, Martin, 2012. "The multivariate Piecing-Together approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 161-170.
    10. Fabrizio Durante & Juan Fernández-Sánchez & Wolfgang Trutschnig & Manuel Úbeda-Flores, 2020. "On the Size of Subclasses of Quasi-Copulas and Their Dedekind–MacNeille Completion," Mathematics, MDPI, vol. 8(12), pages 1-11, December.
    11. Saminger-Platz Susanne & De Jesús Arias-García José & Mesiar Radko & Klement Erich Peter, 2017. "Characterizations of bivariate conic, extreme value, and Archimax copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 45-58, January.
    12. Ali E. Abbas, 2009. "Multiattribute Utility Copulas," Operations Research, INFORMS, vol. 57(6), pages 1367-1383, December.
    13. Nelsen, Roger B. & Quesada-Molina, José Juan & Rodri­guez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2008. "On the construction of copulas and quasi-copulas with given diagonal sections," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 473-483, April.
    14. Nelsen, Roger B. & Molina, José Juan Quesada & Lallena, José Antonio Rodríguez & Flores, Manuel Úbeda, 2004. "Best-possible bounds on sets of bivariate distribution functions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 348-358, August.
    15. B. Baets & H. Meyer & B. Schuymer, 2006. "Cyclic Evaluation of Transitivity of Reciprocal Relations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 26(2), pages 217-238, April.
    16. Juan Fernández Sánchez & Manuel Úbeda-Flores, 2014. "Semi-polynomial copulas," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 129-140, March.
    17. repec:bpj:demode:v:6:y:2018:i:1:p:139-155:n:9 is not listed on IDEAS

    More about this item

    Keywords

    Copula Lattice Quasi-copula;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:9:p:1365-1369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.