IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i3p438-445.html
   My bibliography  Save this article

A note on improving quadratic inference functions using a linear shrinkage approach

Author

Listed:
  • Han, Peisong
  • Song, Peter X.-K.

Abstract

In some commonly used longitudinal clinical trials designs, the quadratic inference functions (QIF) method fails to work due to non-invertible estimation of the optimal weighting matrix. We propose a modified QIF method, in which the optimal weighting matrix is estimated by a linear shrinkage estimator, replacing the sample covariance matrix. We prove that the linear shrinkage estimator is consistent and asymptotically optimal under the expected quadratic loss, and will have more stable numerical performance than the sample covariance matrix. Simulations show that numerical improvements are acquired in light of a higher percentage of convergence, and smaller standard errors and mean square errors of parameter estimates.

Suggested Citation

  • Han, Peisong & Song, Peter X.-K., 2011. "A note on improving quadratic inference functions using a linear shrinkage approach," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 438-445, March.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:3:p:438-445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00350-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Annie Qu, 2004. "Assessing robustness of generalised estimating equations and quadratic inference functions," Biometrika, Biometrika Trust, vol. 91(2), pages 447-459, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Westgate, Philip M., 2013. "A bias-corrected covariance estimator for improved inference when using an unstructured correlation with quadratic inference functions," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1553-1558.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:3:p:438-445. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.