IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v65y2003i3p263-268.html
   My bibliography  Save this article

Kendall distribution functions

Author

Listed:
  • Nelsen, Roger B.
  • Quesada-Molina, José Juan
  • Rodríguez-Lallena, José Antonio
  • Úbeda-Flores, Manuel

Abstract

If X and Y are continuous random variables with joint distribution function H, then the Kendall distribution function of (X,Y) is the distribution function of the random variable H(X,Y). Kendall distribution functions arise in the study of stochastic orderings of random vectors. In this paper we study various properties of Kendall distribution functions for both populations and samples.

Suggested Citation

  • Nelsen, Roger B. & Quesada-Molina, José Juan & Rodríguez-Lallena, José Antonio & Úbeda-Flores, Manuel, 2003. "Kendall distribution functions," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 263-268, November.
  • Handle: RePEc:eee:stapro:v:65:y:2003:i:3:p:263-268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00270-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    2. Abdulhamid A. Alzaid & Weaam M. Alhadlaq, 2023. "A New Family of Archimedean Copulas: The Half-Logistic Family of Copulas," Mathematics, MDPI, vol. 12(1), pages 1-18, December.
    3. Fuchs, Sebastian & Schmidt, Klaus D., 2021. "On order statistics and Kendall’s tau," Statistics & Probability Letters, Elsevier, vol. 169(C).
    4. Nowak, Claus P. & Konietschke, Frank, 2021. "Simultaneous inference for Kendall’s tau," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    6. Nappo Giovanna & Spizzichino Fabio, 2020. "Relations between ageing and dependence for exchangeable lifetimes with an extension for the IFRA/DFRA property," Dependence Modeling, De Gruyter, vol. 8(1), pages 1-33, January.
    7. Fountain, Robert L. & Herman Jr., John R. & Rustvold, D. Leif, 2008. "An application of Kendall distributions and alternative dependence measures: SPX vs. VIX," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 469-472, April.
    8. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    9. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
    10. Yeting Du & Johanna Nešlehová, 2013. "A moment-based test for extreme-value dependence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 673-695, July.
    11. Hideatsu Tsukahara, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 287-289, August.
    12. Nappo Giovanna & Spizzichino Fabio, 2020. "Relations between ageing and dependence for exchangeable lifetimes with an extension for the IFRA/DFRA property," Dependence Modeling, De Gruyter, vol. 8(1), pages 1-33, January.
    13. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    15. Fontanari Andrea & Cirillo Pasquale & Oosterlee Cornelis W., 2020. "Lorenz-generated bivariate Archimedean copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 186-209, January.
    16. Cousin, Areski & Di Bernardino, Elena, 2013. "On multivariate extensions of Value-at-Risk," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 32-46.
    17. Elena Di Bernardino & Clémentine Prieur, 2014. "Estimation of multivariate conditional-tail-expectation using Kendall's process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 241-267, June.
    18. Quessy, Jean-François & Durocher, Martin, 2019. "The class of copulas arising from squared distributions: Properties and inference," Econometrics and Statistics, Elsevier, vol. 12(C), pages 148-166.
    19. Erem, Aysegul & Bayramoglu, Ismihan, 2017. "Exact and asymptotic distributions of exceedance statistics for bivariate random sequences," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 181-188.
    20. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Durante & A. Gatto & F. Ravazzolo, 2024. "Understanding relationships with the Aggregate Zonal Imbalance using copulas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 513-554, April.
    2. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    3. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    4. Chao Xun & Huan Zheng & Zhaoyu Han, 2024. "Decomposition of air conditioning electricity consumption based on effective duration," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-21, August.
    5. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.
    7. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Lin, Feng & Peng, Liang & Xie, Jiehua & Yang, Jingping, 2018. "Stochastic distortion and its transformed copula," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 148-166.
    9. Rodríguez-Lallena, José A. & Úbeda-Flores, Manuel, 2003. "Distribution functions of multivariate copulas," Statistics & Probability Letters, Elsevier, vol. 64(1), pages 41-50, August.
    10. Nappo Giovanna & Spizzichino Fabio, 2020. "Relations between ageing and dependence for exchangeable lifetimes with an extension for the IFRA/DFRA property," Dependence Modeling, De Gruyter, vol. 8(1), pages 1-33, January.
    11. Li, Wei & Chen, Wei & Jiang, Zhen & Lu, Zhenzhou & Liu, Yu, 2014. "New validation metrics for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 1-11.
    12. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    13. Cousin, Areski & Di Bernardino, Elena, 2013. "On multivariate extensions of Value-at-Risk," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 32-46.
    14. Jonas Dovern & Hans Manner, 2020. "Order‐invariant tests for proper calibration of multivariate density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
    15. Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022. "Score-based calibration testing for multivariate forecast distributions," Papers 2211.16362, arXiv.org, revised Dec 2023.
    16. repec:jss:jstsof:21:i04 is not listed on IDEAS
    17. Areski Cousin & Elena Di Bernadino, 2013. "On Multivariate Extensions of Value-at-Risk," Working Papers hal-00638382, HAL.
    18. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    19. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    20. Abdulhamid A. Alzaid & Weaam M. Alhadlaq, 2023. "A New Family of Archimedean Copulas: The Half-Logistic Family of Copulas," Mathematics, MDPI, vol. 12(1), pages 1-18, December.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:65:y:2003:i:3:p:263-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.