IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v53y2001i3p325-329.html
   My bibliography  Save this article

Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution

Author

Listed:
  • Schlather, Martin

Abstract

The tail behaviour of many bivariate distributions with unit Fréchet margins can be characterised by the coefficient of tail dependence and a slowly varying function. We show that such a characterisation is not always possible, and neither implies nor is implied by the fact that the distribution belongs to the domain of attraction of a bivariate extreme value distribution.

Suggested Citation

  • Schlather, Martin, 2001. "Examples for the coefficient of tail dependence and the domain of attraction of a bivariate extreme value distribution," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 325-329, June.
  • Handle: RePEc:eee:stapro:v:53:y:2001:i:3:p:325-329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00090-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    2. P. Bortot & S. Coles & J. Tawn, 2000. "The multivariate Gaussian tail model: an application to oceanographic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 31-049.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2004. "Weighted Approximations of Tail Copula Processes with Application to Testing the Multivariate Extreme Value Condition," Other publications TiSEM 0b2c1bfa-d609-494a-8929-8, Tilburg University, School of Economics and Management.
    2. Wu, Lifan & Samorodnitsky, Gennady, 2020. "Regularly varying random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4470-4492.
    3. Dutfoy Anne & Parey Sylvie & Roche Nicolas, 2014. "Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-19, June.
    4. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    5. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate conditional versions of Spearman's rho and related measures of tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1123-1140, July.
    6. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    7. Einmahl, J.H.J. & de Haan, L.F.M. & Li, D., 2006. "Weighted approximations of tail copula processes with applications to testing the bivariate extreme value condition," Other publications TiSEM 18b65ac3-ba79-4bff-ad53-2, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
    2. Ibrahim Ergen, 2014. "Tail dependence and diversification benefits in emerging market stocks: an extreme value theory approach," Applied Economics, Taylor & Francis Journals, vol. 46(19), pages 2215-2227, July.
    3. Moore, Kyle & Zhou, Chen, 2014. "The determinants of systemic importance," LSE Research Online Documents on Economics 59289, London School of Economics and Political Science, LSE Library.
    4. Xiangying Meng & Xianhua Wei, 2018. "Systematic Correlation is Priced as Risk Factor," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-2.
    5. Fang Zhang & Zhengjun Zhang, 2020. "The tail dependence of the carbon markets: The implication of portfolio management," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-17, August.
    6. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    7. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    8. Peng, Liang, 2014. "Joint tail of ECOMOR and LCR reinsurance treaties," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 116-120.
    9. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    10. Brendan Bradley & Murad Taqqu, 2004. "Asset allocation when guarding against catastrophic losses: a comparison between the structure variable and joint probability methods," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 619-636.
    11. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    12. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    13. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    14. Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
    15. Maarten van Oordt & Chen Zhou, 2011. "Systematic risk under extremely adverse market condition," DNB Working Papers 281, Netherlands Central Bank, Research Department.
    16. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    17. Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
    18. Tankov, Peter, 2016. "Tails of weakly dependent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 73-86.
    19. Holger Drees, 2012. "Extreme value analysis of actuarial risks: estimation and model validation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 225-264, June.
    20. Drees, Holger & Müller, Peter, 2008. "Fitting and validation of a bivariate model for large claims," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 638-650, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:53:y:2001:i:3:p:325-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.