IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v223y2025ics0167715225000732.html
   My bibliography  Save this article

Comparison results of range-based quantities in the classical risk models

Author

Listed:
  • Lkabous, Mohamed Amine
  • Yang, Mengni

Abstract

In this paper, we investigate the range-based risk quantities in classical risk models. Specifically, we present some comparison results with respect to the stochastic ordering. We also propose some range-based VaR-type risk measures and study their properties, providing insights into their practical applications and implications for risk management.

Suggested Citation

  • Lkabous, Mohamed Amine & Yang, Mengni, 2025. "Comparison results of range-based quantities in the classical risk models," Statistics & Probability Letters, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:stapro:v:223:y:2025:i:c:s0167715225000732
    DOI: 10.1016/j.spl.2025.110428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715225000732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2025.110428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bartoszewicz, Jaroslaw, 1986. "Dispersive ordering and the total time on test transformation," Statistics & Probability Letters, Elsevier, vol. 4(6), pages 285-288, October.
    2. Picard, Philippe, 1994. "On some measures of the severity of ruin in the classical Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 14(2), pages 107-115, May.
    3. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    4. Bartoszewicz, J., 1987. "A note on dispersive ordering defined by hazard functions," Statistics & Probability Letters, Elsevier, vol. 6(1), pages 13-16, September.
    5. Li, Xin & Liu, Haibo & Tang, Qihe & Zhu, Jinxia, 2020. "Liquidation risk in insurance under contemporary regulatory frameworks," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 36-49.
    6. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    7. Trufin, Julien & Albrecher, Hansjoerg & Denuit, Michel, 2011. "Properties of risk measures derived from ruin theory," LIDAM Reprints ISBA 2011019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    9. Ilie-Radu Mitric & Julien Trufin, 2016. "On a risk measure inspired from the ruin probability and the expected deficit at ruin," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(10), pages 932-951, November.
    10. Bin Li & Qihe Tang & Lihe Wang & Xiaowen Zhou, 2014. "Liquidation risk in the presence of Chapters 7 and 11 of the US bankruptcy code," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 1-19.
    11. Julien Trufin & Hansjoerg Albrecher & Michel M Denuit, 2011. "Properties of a Risk Measure Derived from Ruin Theory," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 36(2), pages 174-188, December.
    12. Etienne Tanré & Pierre Vallois, 2006. "Range of Brownian Motion with Drift," Journal of Theoretical Probability, Springer, vol. 19(1), pages 45-69, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lkabous, Mohamed Amine & Wang, Zijia, 2023. "On the area in the red of Lévy risk processes and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 257-278.
    2. Cheung, Eric C.K. & Zhu, Wei, 2023. "Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 84-101.
    3. Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
    4. Jiandong Ren & Kristina Sendova & Ričardas Zitikis, 2019. "Special Issue “Risk, Ruin and Survival: Decision Making in Insurance and Finance”," Risks, MDPI, vol. 7(3), pages 1-7, September.
    5. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    6. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    7. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    8. Khaledi, Baha-Eldin & Kochar, Subhash, 2000. "On dispersive ordering between order statistics in one-sample and two-sample problems," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 257-261, February.
    9. Wenyuan Wang & Xiang Yu & Xiaowen Zhou, 2021. "On optimality of barrier dividend control under endogenous regime switching with application to Chapter 11 bankruptcy," Papers 2108.01800, arXiv.org, revised Nov 2023.
    10. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    11. David Landriault & Bin Li & Mohamed Amine Lkabous, 2019. "On occupation times in the red of L\'evy risk models," Papers 1903.03721, arXiv.org, revised Jul 2019.
    12. Jongwoo Jeon & Subhash Kochar & Chul Park, 2006. "Dispersive ordering—Some applications and examples," Statistical Papers, Springer, vol. 47(2), pages 227-247, March.
    13. Hirbod Assa & Manuel Morales & Hassan Omidi Firouzi, 2016. "On the Capital Allocation Problem for a New Coherent Risk Measure in Collective Risk Theory," Risks, MDPI, vol. 4(3), pages 1-20, August.
    14. repec:hal:wpaper:hal-00870224 is not listed on IDEAS
    15. Eva Boj del Val & M. Mercè Claramunt Bielsa & Xavier Varea Soler, 2020. "Role of Private Long-Term Care Insurance in Financial Sustainability for an Aging Society," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    16. Satya R. Chakravarty & Pietro Muliere, 2003. "Welfare indicators: A review and new perspectives. 1. Measurement of inequality," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 457-497.
    17. Dickson, David C. M. & Waters, Howard R., 1999. "Ruin probabilities with compounding assets," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 49-62, September.
    18. Giuseppe Campolieti & Hiromichi Kato & Roman N. Makarov, 2022. "Spectral Expansions for Credit Risk Modelling with Occupation Times," Risks, MDPI, vol. 10(12), pages 1-20, November.
    19. He, Jingmin & Wu, Rong & Zhang, Huayue, 2009. "Total duration of negative surplus for the risk model with debit interest," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1320-1326, May.
    20. Peng Zhao & N. Balakrishnan, 2011. "Dispersive ordering of fail-safe systems with heterogeneous exponential components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 203-210, September.
    21. Justin Jia & Ronald M. Harstad & Michael H. Rothkopf, 2010. "Information Variability Impacts in Auctions," Decision Analysis, INFORMS, vol. 7(1), pages 137-142, March.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:223:y:2025:i:c:s0167715225000732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.