IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v146y2019icp124-131.html
   My bibliography  Save this article

Sliced Latin hypercube designs with both branching and nested factors

Author

Listed:
  • Chen, Hao
  • Yang, Jinyu
  • Lin, Dennis K.J.
  • Liu, Min-Qian

Abstract

One special kind of sliced Latin hypercube designs (SLHDs) for computer experiments with branching and nested factors is proposed here, where not only the whole design is an SLHD, but all its slices are also SLHDs. In addition, the SLHD in the first layer has a flexible number of slices, and the slice numbers of the SLHDs in the second layer can be flexible (either the same or different). The construction method is easy to implement, and the resulting designs are orthogonal under some mild conditions. Based on the centered L2-discrepancy, uniform SLHDs with branching and nested factors are further constructed.

Suggested Citation

  • Chen, Hao & Yang, Jinyu & Lin, Dennis K.J. & Liu, Min-Qian, 2019. "Sliced Latin hypercube designs with both branching and nested factors," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 124-131.
  • Handle: RePEc:eee:stapro:v:146:y:2019:i:c:p:124-131
    DOI: 10.1016/j.spl.2018.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218303547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiao-Lei & Zhao, Yu-Na & Yang, Jian-Feng & Liu, Min-Qian, 2017. "Construction of (nearly) orthogonal sliced Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 174-180.
    2. Peter Z. G. Qian, 2012. "Sliced Latin Hypercube Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 393-399, March.
    3. Fasheng Sun & Min-Qian Liu & Dennis K. J. Lin, 2009. "Construction of orthogonal Latin hypercube designs," Biometrika, Biometrika Trust, vol. 96(4), pages 971-974.
    4. Hao Chen & Min-Qian Liu, 2015. "Nested Latin Hypercube Designs with Sliced Structures," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(22), pages 4721-4733, November.
    5. David M. Steinberg & Dennis K. J. Lin, 2006. "A construction method for orthogonal Latin hypercube designs," Biometrika, Biometrika Trust, vol. 93(2), pages 279-288, June.
    6. C. Devon Lin & Rahul Mukerjee & Boxin Tang, 2009. "Construction of orthogonal and nearly orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 96(1), pages 243-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ru Yuan & Bing Guo & Min-Qian Liu, 2021. "Flexible sliced Latin hypercube designs with slices of different sizes," Statistical Papers, Springer, vol. 62(3), pages 1117-1134, June.
    2. Zong-Feng Qi & Xue-Ru Zhang & Yong-Dao Zhou, 2018. "Generalized good lattice point sets," Computational Statistics, Springer, vol. 33(2), pages 887-901, June.
    3. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    4. Wenlong Li & Min-Qian Liu & Jian-Feng Yang, 2022. "Construction of column-orthogonal strong orthogonal arrays," Statistical Papers, Springer, vol. 63(2), pages 515-530, April.
    5. Bing Guo & Xiao-Rong Li & Min-Qian Liu & Xue Yang, 2023. "Construction of orthogonal general sliced Latin hypercube designs," Statistical Papers, Springer, vol. 64(3), pages 987-1014, June.
    6. Wang, Sumin & Wang, Dongying & Sun, Fasheng, 2019. "A central limit theorem for marginally coupled designs," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 168-174.
    7. Stelios Georgiou & Christos Koukouvinos & Min-Qian Liu, 2014. "U-type and column-orthogonal designs for computer experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1057-1073, November.
    8. Ifigenia Efthimiou & Stelios Georgiou & Min-Qian Liu, 2015. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 45-57, January.
    9. Mandal, B.N. & Dash, Sukanta & Parui, Shyamsundar & Parsad, Rajender, 2016. "Orthogonal Latin hypercube designs with special reference to four factors," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 181-185.
    10. Fasheng Sun & Boxin Tang, 2017. "A Method of Constructing Space-Filling Orthogonal Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 683-689, April.
    11. Li, Hui & Yang, Liuqing & Liu, Min-Qian, 2022. "Construction of space-filling orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 180(C).
    12. Weiping Zhou & Jinyu Yang & Min-Qian Liu, 2021. "Construction of orthogonal marginally coupled designs," Statistical Papers, Springer, vol. 62(4), pages 1795-1820, August.
    13. Li Gu & Jian-Feng Yang, 2013. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 819-830, August.
    14. Sukanta Dash & Baidya Nath Mandal & Rajender Parsad, 2020. "On the construction of nested orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 347-353, April.
    15. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    16. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    17. Su, Zheren & Wang, Yaping & Zhou, Yingchun, 2020. "On maximin distance and nearly orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 166(C).
    18. Li, Min & Liu, Min-Qian & Wang, Xiao-Lei & Zhou, Yong-Dao, 2020. "Prediction for computer experiments with both quantitative and qualitative factors," Statistics & Probability Letters, Elsevier, vol. 165(C).
    19. Vikram V. Garg & Roy H. Stogner, 2017. "Hierarchical Latin Hypercube Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 673-682, April.
    20. Prescott, Philip, 2009. "Orthogonal-column Latin hypercube designs with small samples," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1191-1200, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:146:y:2019:i:c:p:124-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.