IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v166y2020ics0167715220301814.html
   My bibliography  Save this article

On maximin distance and nearly orthogonal Latin hypercube designs

Author

Listed:
  • Su, Zheren
  • Wang, Yaping
  • Zhou, Yingchun

Abstract

Maximin distance Latin hypercube designs (LHDs) are frequently used in computer experiments, but their constructions are challenging. In this paper, we present some new results connecting maximin L2-distance optimality and near orthogonality for mirror-symmetric LHDs. We further propose a simple and effective method for constructing nearly orthogonal LHDs that can yield almost the largest minimum distance. The obtained designs with small and medium sizes are tabulated and their superior performances are illustrated via comparisons.

Suggested Citation

  • Su, Zheren & Wang, Yaping & Zhou, Yingchun, 2020. "On maximin distance and nearly orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301814
    DOI: 10.1016/j.spl.2020.108878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ifigenia Efthimiou & Stelios Georgiou & Min-Qian Liu, 2015. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 45-57, January.
    2. M. J. Bayarri & James O. Berger & Woncheol Jang & Surajit Ray & Luis R. Pericchi & Ingmar Visser, 2019. "Prior-based Bayesian information criterion," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 3(1), pages 2-13, January.
    3. Yongdao Zhou & Hongquan Xu, 2015. "Space-filling properties of good lattice point sets," Biometrika, Biometrika Trust, vol. 102(4), pages 959-966.
    4. Qian Xiao & Hongquan Xu, 2017. "Construction of maximin distance Latin squares and related Latin hypercube designs," Biometrika, Biometrika Trust, vol. 104(2), pages 455-464.
    5. Fasheng Sun & Min-Qian Liu & Dennis K. J. Lin, 2009. "Construction of orthogonal Latin hypercube designs," Biometrika, Biometrika Trust, vol. 96(4), pages 971-974.
    6. Fasheng Sun & Boxin Tang, 2017. "A general rotation method for orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 104(2), pages 465-472.
    7. C. Devon Lin & Rahul Mukerjee & Boxin Tang, 2009. "Construction of orthogonal and nearly orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 96(1), pages 243-247.
    8. Yaping Wang & Jianfeng Yang & Hongquan Xu, 2018. "On the connection between maximin distance designs and orthogonal designs," Biometrika, Biometrika Trust, vol. 105(2), pages 471-477.
    9. Derek Bingham & Randy R. Sitter & Boxin Tang, 2009. "Orthogonal and nearly orthogonal designs for computer experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 51-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    2. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    3. Bing Guo & Xiao-Rong Li & Min-Qian Liu & Xue Yang, 2023. "Construction of orthogonal general sliced Latin hypercube designs," Statistical Papers, Springer, vol. 64(3), pages 987-1014, June.
    4. Weiping Zhou & Jinyu Yang & Min-Qian Liu, 2021. "Construction of orthogonal marginally coupled designs," Statistical Papers, Springer, vol. 62(4), pages 1795-1820, August.
    5. Zong-Feng Qi & Xue-Ru Zhang & Yong-Dao Zhou, 2018. "Generalized good lattice point sets," Computational Statistics, Springer, vol. 33(2), pages 887-901, June.
    6. Sukanta Dash & Baidya Nath Mandal & Rajender Parsad, 2020. "On the construction of nested orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 347-353, April.
    7. Wenlong Li & Min-Qian Liu & Jian-Feng Yang, 2022. "Construction of column-orthogonal strong orthogonal arrays," Statistical Papers, Springer, vol. 63(2), pages 515-530, April.
    8. Stelios Georgiou & Christos Koukouvinos & Min-Qian Liu, 2014. "U-type and column-orthogonal designs for computer experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1057-1073, November.
    9. Ifigenia Efthimiou & Stelios Georgiou & Min-Qian Liu, 2015. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 45-57, January.
    10. Mandal, B.N. & Dash, Sukanta & Parui, Shyamsundar & Parsad, Rajender, 2016. "Orthogonal Latin hypercube designs with special reference to four factors," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 181-185.
    11. Fasheng Sun & Boxin Tang, 2017. "A Method of Constructing Space-Filling Orthogonal Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 683-689, April.
    12. Li, Hui & Yang, Liuqing & Liu, Min-Qian, 2022. "Construction of space-filling orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 180(C).
    13. Ru Yuan & Bing Guo & Min-Qian Liu, 2021. "Flexible sliced Latin hypercube designs with slices of different sizes," Statistical Papers, Springer, vol. 62(3), pages 1117-1134, June.
    14. Li Gu & Jian-Feng Yang, 2013. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 819-830, August.
    15. Liuqing Yang & Yongdao Zhou & Min-Qian Liu, 2021. "Maximin distance designs based on densest packings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 615-634, July.
    16. Wang, Sumin & Wang, Dongying & Sun, Fasheng, 2019. "A central limit theorem for marginally coupled designs," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 168-174.
    17. Chen, Hao & Yang, Jinyu & Lin, Dennis K.J. & Liu, Min-Qian, 2019. "Sliced Latin hypercube designs with both branching and nested factors," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 124-131.
    18. Qing Liu & Neeraj Arora, 2011. "Efficient Choice Designs for a Consider-Then-Choose Model," Marketing Science, INFORMS, vol. 30(2), pages 321-338, 03-04.
    19. Qiming Bai & Hongyi Li & Xingyou Huang & Huili Xue, 2023. "Design efficiency for minimum projection uniform designs with q levels," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 577-594, July.
    20. D. Vélez & M. E. Pérez & L. R. Pericchi, 2022. "Increasing the replicability for linear models via adaptive significance levels," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 771-789, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.