IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v222y2025ics0167715225000537.html
   My bibliography  Save this article

Construction of designs with space-filling and orthogonal property

Author

Listed:
  • Li, Min
  • Feng, Yuan
  • Wang, Xiao
  • Zhou, Weiping

Abstract

Space-filling designs are widely used in computer experiments, but their construction presents significant challenges. This paper introduces novel methods for generating maximin distance Latin hypercube designs (LHDs) and space-filling balanced designs with a slice structure, removing the reliance on computational searches. We also offer a simple yet effective approach to constructing sliced Latin hypercube designs (SLHDs), which achieve space-filling in each slice and maintain good orthogonality and stratification properties across the entire design. The resulting designs are more space-filling than existing designs.

Suggested Citation

  • Li, Min & Feng, Yuan & Wang, Xiao & Zhou, Weiping, 2025. "Construction of designs with space-filling and orthogonal property," Statistics & Probability Letters, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:stapro:v:222:y:2025:i:c:s0167715225000537
    DOI: 10.1016/j.spl.2025.110408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715225000537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2025.110408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Roshan Joseph & Evren Gul & Shan Ba, 2015. "Maximum projection designs for computer experiments," Biometrika, Biometrika Trust, vol. 102(2), pages 371-380.
    2. Yongdao Zhou & Hongquan Xu, 2015. "Space-filling properties of good lattice point sets," Biometrika, Biometrika Trust, vol. 102(4), pages 959-966.
    3. Fasheng Sun & Boxin Tang, 2017. "A Method of Constructing Space-Filling Orthogonal Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 683-689, April.
    4. C. Devon Lin & Rahul Mukerjee & Boxin Tang, 2009. "Construction of orthogonal and nearly orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 96(1), pages 243-247.
    5. Derek Bingham & Randy R. Sitter & Boxin Tang, 2009. "Orthogonal and nearly orthogonal designs for computer experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 51-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chunyan & Lin, Dennis K.J., 2024. "Strong orthogonal Latin hypercubes for computer experiments," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    2. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    3. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    4. Pengnan Li & Chunjie Wang & Bochuan Jiang, 2025. "Group strong orthogonal arrays and their construction methods," Statistical Papers, Springer, vol. 66(3), pages 1-30, April.
    5. Su, Zheren & Wang, Yaping & Zhou, Yingchun, 2020. "On maximin distance and nearly orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 166(C).
    6. Zong-Feng Qi & Xue-Ru Zhang & Yong-Dao Zhou, 2018. "Generalized good lattice point sets," Computational Statistics, Springer, vol. 33(2), pages 887-901, June.
    7. Wenlong Li & Min-Qian Liu & Jian-Feng Yang, 2022. "Construction of column-orthogonal strong orthogonal arrays," Statistical Papers, Springer, vol. 63(2), pages 515-530, April.
    8. Parker, J.D. & Lucas, T.W. & Carlyle, W.M., 2024. "Sequentially extending space-filling experimental designs by optimally permuting and stacking columns of the design matrix," European Journal of Operational Research, Elsevier, vol. 319(2), pages 600-610.
    9. Wang, Sumin & Wang, Dongying & Sun, Fasheng, 2019. "A central limit theorem for marginally coupled designs," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 168-174.
    10. Stelios Georgiou & Christos Koukouvinos & Min-Qian Liu, 2014. "U-type and column-orthogonal designs for computer experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1057-1073, November.
    11. Ifigenia Efthimiou & Stelios Georgiou & Min-Qian Liu, 2015. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 45-57, January.
    12. Mandal, B.N. & Dash, Sukanta & Parui, Shyamsundar & Parsad, Rajender, 2016. "Orthogonal Latin hypercube designs with special reference to four factors," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 181-185.
    13. Fasheng Sun & Boxin Tang, 2017. "A Method of Constructing Space-Filling Orthogonal Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 683-689, April.
    14. Weiping Zhou & Jinyu Yang & Min-Qian Liu, 2021. "Construction of orthogonal marginally coupled designs," Statistical Papers, Springer, vol. 62(4), pages 1795-1820, August.
    15. Ru Yuan & Bing Guo & Min-Qian Liu, 2021. "Flexible sliced Latin hypercube designs with slices of different sizes," Statistical Papers, Springer, vol. 62(3), pages 1117-1134, June.
    16. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    17. Francisco Castillo-Zunino & Pinar Keskinocak, 2021. "Bi-criteria multiple knapsack problem with grouped items," Journal of Heuristics, Springer, vol. 27(5), pages 747-789, October.
    18. Li Gu & Jian-Feng Yang, 2013. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 819-830, August.
    19. Sukanta Dash & Baidya Nath Mandal & Rajender Parsad, 2020. "On the construction of nested orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 347-353, April.
    20. Xueru Zhang & Dennis K. J. Lin & Lin Wang, 2023. "Digital Triplet: A Sequential Methodology for Digital Twin Learning," Mathematics, MDPI, vol. 11(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:222:y:2025:i:c:s0167715225000537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.