IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i3d10.1007_s00362-025-01674-1.html
   My bibliography  Save this article

Group strong orthogonal arrays and their construction methods

Author

Listed:
  • Pengnan Li

    (Changchun University of Technology)

  • Chunjie Wang

    (Changchun University of Technology)

  • Bochuan Jiang

    (Beijing Jiaotong University)

Abstract

In practical applications, group structures may exist between response variables and input factors in certain computer experiments. The interactions of interest occur exclusively within factors within several disjoint groups. In such experiments, an ideal design ensures superior space-filling properties for each group compared to the overall design, which itself exhibits commendable space-filling characteristics. Inspired by this idea, we introduce the concept of group strong orthogonal arrays, which can be partitioned into distinct groups. Both the overall design and each individual group constitute strong orthogonal arrays, with the strength of each group exceeding that of the entire design. Addressing different strengths and levels, we present the construction methods for three distinct types of such designs, among which two types are column-orthogonal. Orthogonal arrays, difference matrices, and rotation matrices play pivotal roles in the construction process.

Suggested Citation

  • Pengnan Li & Chunjie Wang & Bochuan Jiang, 2025. "Group strong orthogonal arrays and their construction methods," Statistical Papers, Springer, vol. 66(3), pages 1-30, April.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:3:d:10.1007_s00362-025-01674-1
    DOI: 10.1007/s00362-025-01674-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01674-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01674-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, J.P.C., 2017. "Design and Analysis of simulation experiments : Tutorial," Other publications TiSEM c7ad6b68-dcd6-4485-9ee2-0, Tilburg University, School of Economics and Management.
    2. Mengmeng Liu & Min-Qian Liu & Jinyu Yang, 2022. "Construction of group strong orthogonal arrays of strength two plus," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 657-674, August.
    3. V. Roshan Joseph & Evren Gul & Shan Ba, 2015. "Maximum projection designs for computer experiments," Biometrika, Biometrika Trust, vol. 102(2), pages 371-380.
    4. Cheng-Yu Sun & Boxin Tang, 2023. "Uniform Projection Designs and Strong Orthogonal Arrays," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 417-423, January.
    5. Xu He, 2021. "Lattice-based designs with quasi-optimal separation distance on all projections [A framework for controlling sources of inaccuracy in Gaussian process emulation of deterministic computer experiment," Biometrika, Biometrika Trust, vol. 108(2), pages 443-454.
    6. Yongdao Zhou & Hongquan Xu, 2015. "Space-filling properties of good lattice point sets," Biometrika, Biometrika Trust, vol. 102(4), pages 959-966.
    7. Yongdao Zhou & Boxin Tang, 2019. "Column-orthogonal strong orthogonal arrays of strength two plus and three minus," Biometrika, Biometrika Trust, vol. 106(4), pages 997-1004.
    8. Yuanzhen He & Boxin Tang, 2013. "Strong orthogonal arrays and associated Latin hypercubes for computer experiments," Biometrika, Biometrika Trust, vol. 100(1), pages 254-260.
    9. Wenlong Li & Min-Qian Liu & Boxin Tang, 2021. "A method of constructing maximin distance designs [Interleaved lattice-based maximin distance designs]," Biometrika, Biometrika Trust, vol. 108(4), pages 845-855.
    10. David M. Steinberg & Dennis K. J. Lin, 2006. "A construction method for orthogonal Latin hypercube designs," Biometrika, Biometrika Trust, vol. 93(2), pages 279-288, June.
    11. C. Devon Lin & Rahul Mukerjee & Boxin Tang, 2009. "Construction of orthogonal and nearly orthogonal Latin hypercubes," Biometrika, Biometrika Trust, vol. 96(1), pages 243-247.
    12. Yaping Wang & Jianfeng Yang & Hongquan Xu, 2018. "On the connection between maximin distance designs and orthogonal designs," Biometrika, Biometrika Trust, vol. 105(2), pages 471-477.
    13. Derek Bingham & Randy R. Sitter & Boxin Tang, 2009. "Orthogonal and nearly orthogonal designs for computer experiments," Biometrika, Biometrika Trust, vol. 96(1), pages 51-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chunyan & Lin, Dennis K.J., 2024. "Strong orthogonal Latin hypercubes for computer experiments," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    2. Song-Nan Liu & Min-Qian Liu & Jin-Yu Yang, 2023. "Construction of Column-Orthogonal Designs with Two-Dimensional Stratifications," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    3. Wenlong Li & Min-Qian Liu & Jian-Feng Yang, 2022. "Construction of column-orthogonal strong orthogonal arrays," Statistical Papers, Springer, vol. 63(2), pages 515-530, April.
    4. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    5. Su, Zheren & Wang, Yaping & Zhou, Yingchun, 2020. "On maximin distance and nearly orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 166(C).
    6. Grömping, Ulrike, 2023. "A unifying implementation of stratum (aka strong) orthogonal arrays," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    7. Zong-Feng Qi & Xue-Ru Zhang & Yong-Dao Zhou, 2018. "Generalized good lattice point sets," Computational Statistics, Springer, vol. 33(2), pages 887-901, June.
    8. Wenlong Li & Min-Qian Liu & Jian-Feng Yang, 2024. "Several new classes of space-filling designs," Statistical Papers, Springer, vol. 65(1), pages 357-379, February.
    9. Mengmeng Liu & Min-Qian Liu & Jinyu Yang, 2022. "Construction of group strong orthogonal arrays of strength two plus," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 657-674, August.
    10. Stelios Georgiou & Christos Koukouvinos & Min-Qian Liu, 2014. "U-type and column-orthogonal designs for computer experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(8), pages 1057-1073, November.
    11. Ifigenia Efthimiou & Stelios Georgiou & Min-Qian Liu, 2015. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 45-57, January.
    12. Mandal, B.N. & Dash, Sukanta & Parui, Shyamsundar & Parsad, Rajender, 2016. "Orthogonal Latin hypercube designs with special reference to four factors," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 181-185.
    13. Fasheng Sun & Boxin Tang, 2017. "A Method of Constructing Space-Filling Orthogonal Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 683-689, April.
    14. Li, Hui & Yang, Liuqing & Liu, Min-Qian, 2022. "Construction of space-filling orthogonal Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 180(C).
    15. Liangwei Qi & Yongdao Zhou, 2025. "Minimum $$\theta $$ θ -aberration criterion for designs with qualitative and quantitative factors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(1), pages 99-117, January.
    16. Yuxin Sun & Wenjun Liu & Ye Tian, 2024. "Projection-Uniform Subsampling Methods for Big Data," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
    17. Ru Yuan & Bing Guo & Min-Qian Liu, 2021. "Flexible sliced Latin hypercube designs with slices of different sizes," Statistical Papers, Springer, vol. 62(3), pages 1117-1134, June.
    18. Li Gu & Jian-Feng Yang, 2013. "Construction of nearly orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 819-830, August.
    19. Jiang, Bochuan & Wang, Zuzheng & Wang, Yaping, 2021. "Strong orthogonal arrays of strength two-plus based on the Addelman–Kempthorne method," Statistics & Probability Letters, Elsevier, vol. 175(C).
    20. Bing Guo & Xiao-Rong Li & Min-Qian Liu & Xue Yang, 2023. "Construction of orthogonal general sliced Latin hypercube designs," Statistical Papers, Springer, vol. 64(3), pages 987-1014, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:3:d:10.1007_s00362-025-01674-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.