IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i497p393-399.html
   My bibliography  Save this article

Sliced Latin Hypercube Designs

Author

Listed:
  • Peter Z. G. Qian

Abstract

This article proposes a method for constructing a new type of space-filling design, called a sliced Latin hypercube design, intended for running computer experiments. Such a design is a special Latin hypercube design that can be partitioned into slices of smaller Latin hypercube designs. It is desirable to use the constructed designs for collective evaluations of computer models and ensembles of multiple computer models. The proposed construction method is easy to implement, capable of accommodating any number of factors, and flexible in run size. Examples are given to illustrate the method. Sampling properties of the constructed designs are examined. Numerical illustration is provided to corroborate the derived theoretical results.

Suggested Citation

  • Peter Z. G. Qian, 2012. "Sliced Latin Hypercube Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 393-399, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:393-399
    DOI: 10.1080/01621459.2011.644132
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2011.644132
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2011.644132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Zhang & Jin Xu & Kai Jia & Yimin Yin & Zhengming Wang, 2019. "Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes," Mathematics, MDPI, vol. 7(9), pages 1-16, September.
    2. Vikram V. Garg & Roy H. Stogner, 2017. "Hierarchical Latin Hypercube Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 673-682, April.
    3. Wang, Sumin & Wang, Dongying & Sun, Fasheng, 2019. "A central limit theorem for marginally coupled designs," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 168-174.
    4. Wang, Xiao-Lei & Zhao, Yu-Na & Yang, Jian-Feng & Liu, Min-Qian, 2017. "Construction of (nearly) orthogonal sliced Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 174-180.
    5. Yang You & Guang Jin & Zhengqiang Pan & Rui Guo, 2021. "MP-CE Method for Space-Filling Design in Constrained Space with Multiple Types of Factors," Mathematics, MDPI, vol. 9(24), pages 1-13, December.
    6. Ray, Douglas & Ramirez-Marquez, Jose, 2020. "A framework for probabilistic model-based engineering and data synthesis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Xiangshun Kong & Mingyao Ai & Kwok Leung Tsui, 2018. "Flexible sliced designs for computer experiments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 631-646, June.
    8. Ru Yuan & Bing Guo & Min-Qian Liu, 2021. "Flexible sliced Latin hypercube designs with slices of different sizes," Statistical Papers, Springer, vol. 62(3), pages 1117-1134, June.
    9. Yang, Xue & Chen, Hao & Liu, Min-Qian, 2014. "Resolvable orthogonal array-based uniform sliced Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 108-115.
    10. Zeng, Yaohui & Zhang, Zijun & Kusiak, Andrew, 2015. "Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms," Energy, Elsevier, vol. 86(C), pages 393-402.
    11. Chen, Hao & Yang, Jinyu & Lin, Dennis K.J. & Liu, Min-Qian, 2019. "Sliced Latin hypercube designs with both branching and nested factors," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 124-131.
    12. Weiping Zhou & Jinyu Yang & Min-Qian Liu, 2021. "Construction of orthogonal marginally coupled designs," Statistical Papers, Springer, vol. 62(4), pages 1795-1820, August.
    13. Li, Min & Liu, Min-Qian & Wang, Xiao-Lei & Zhou, Yong-Dao, 2020. "Prediction for computer experiments with both quantitative and qualitative factors," Statistics & Probability Letters, Elsevier, vol. 165(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:393-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.