IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v76y1998i2p217-230.html
   My bibliography  Save this article

Tolerance to arbitrage

Author

Listed:
  • Salopek, D. M.

Abstract

An arbitrage opportunity is constructed in a frictionless stock market when price processes have continuous sample paths of bounded -variation with .

Suggested Citation

  • Salopek, D. M., 1998. "Tolerance to arbitrage," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 217-230, August.
  • Handle: RePEc:eee:spapps:v:76:y:1998:i:2:p:217-230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(98)00025-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    2. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    3. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    4. Harrison, J Michael & Pitbladdo, Richard & Schaefer, Stephen M, 1984. "Continuous Price Processes in Frictionless Markets Have Infinite Variation," The Journal of Business, University of Chicago Press, vol. 57(3), pages 353-365, July.
    5. Dwyer, Gerald P, Jr & Locke, Peter R & Yu, Wei, 1996. "Index Arbitrage and Nonlinear Dynamics between the S&P 500 Futures and Cash," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 301-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    2. R. Vilela Mendes & M. J. Oliveira & A. M. Rodrigues, 2012. "The fractional volatility model: No-arbitrage, leverage and completeness," Papers 1205.2866, arXiv.org.
    3. Paolo Guasoni & Mikl'os R'asonyi & Walter Schachermayer, 2008. "Consistent price systems and face-lifting pricing under transaction costs," Papers 0803.4416, arXiv.org.
    4. Wang, Xiao-Tian, 2010. "Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 789-796.
    5. Alexander Schied, 2013. "Model-free CPPI," Papers 1305.5915, arXiv.org, revised Jan 2014.
    6. Foad Shokrollahi, 2017. "Fractional delta hedging strategy for pricing currency options with transaction costs," Papers 1702.00037, arXiv.org.
    7. Jani Lukkarinen & Mikko S. Pakkanen, 2016. "Arbitrage without borrowing or short selling?," Papers 1604.07690, arXiv.org, revised Oct 2016.
    8. Nikolai Dokuchaev, 2015. "On the no-arbitrage market and continuity in the Hurst parameter," Papers 1509.06472, arXiv.org, revised Oct 2015.
    9. Pierre R. Bertrand & Abdelkader Hamdouni & Samia Khadhraoui, 2012. "Modelling NASDAQ Series by Sparse Multifractional Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 107-124, March.
    10. Gloter, A. & Hoffmann, M., 2004. "Stochastic volatility and fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(1), pages 143-172, September.
    11. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    12. Paolo Guasoni & Yuliya Mishura & Miklós Rásonyi, 2021. "High-frequency trading with fractional Brownian motion," Finance and Stochastics, Springer, vol. 25(2), pages 277-310, April.
    13. Schied, Alexander, 2014. "Model-free CPPI," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 84-94.
    14. Salopek, D. M., 2002. "A new class of nearly self-financing strategies," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 69-75, January.
    15. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    16. Mikko S. Pakkanen & Jani Lukkarinen, 2016. "Arbitrage without borrowing or short selling?," CREATES Research Papers 2016-13, Department of Economics and Business Economics, Aarhus University.
    17. Wang, Xiao-Tian, 2010. "Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 438-444.
    18. Rosanna Coviello & Cristina Di Girolami & Francesco Russo, 2011. "On stochastic calculus related to financial assets without semimartingales," Papers 1102.2050, arXiv.org.
    19. Sottinen Tommi & Valkeila Esko, 2003. "On arbitrage and replication in the fractional Black–Scholes pricing model," Statistics & Risk Modeling, De Gruyter, vol. 21(2/2003), pages 93-108, February.
    20. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009.
    21. Farshid Mehrdoust & Ali Reza Najafi, 2018. "Pricing European Options under Fractional Black–Scholes Model with a Weak Payoff Function," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 685-706, August.
    22. Vilela Mendes, R. & Oliveira, M.J. & Rodrigues, A.M., 2015. "No-arbitrage, leverage and completeness in a fractional volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 470-478.
    23. Cheridito, Patrick, 2004. "Gaussian moving averages, semimartingales and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 47-68, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    2. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 19, July-Dece.
    3. Hardy Hulley, 2009. "Strict Local Martingales in Continuous Financial Market Models," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2009.
    4. A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    5. Cheridito, Patrick, 2004. "Gaussian moving averages, semimartingales and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 47-68, January.
    6. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013.
    7. Alessandro Fiori Maccioni, 2011. "Endogenous Bubbles in Derivatives Markets: The Risk Neutral Valuation Paradox," Papers 1106.5274, arXiv.org, revised Sep 2011.
    8. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    9. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    10. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    11. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2, July-Dece.
    12. Paolo Guasoni & Miklós Rásonyi & Walter Schachermayer, 2010. "The fundamental theorem of asset pricing for continuous processes under small transaction costs," Annals of Finance, Springer, vol. 6(2), pages 157-191, March.
    13. Krzysztof Burnecki, 1998. "Self-similar models in risk theory," HSC Research Reports HSC/98/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    14. Gabriel Frahm, 2016. "Pricing And Valuation Under The Real-World Measure," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-39, February.
    15. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    16. Kerstin Lamert & Benjamin R. Auer & Ralf Wunderlich, 2023. "Discretization of continuous-time arbitrage strategies in financial markets with fractional Brownian motion," Papers 2311.15635, arXiv.org.
    17. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    18. Berg, Joyce E. & Rietz, Thomas A., 2019. "Longshots, overconfidence and efficiency on the Iowa Electronic Market," International Journal of Forecasting, Elsevier, vol. 35(1), pages 271-287.
    19. Oxelheim, Lars & Rafferty, Michael, 2005. "On the static efficiency of secondary bond markets," Journal of Multinational Financial Management, Elsevier, vol. 15(2), pages 117-135, April.
    20. Antonello D’Agostino & Kieran Mcquinn & Karl Whelan, 2012. "Are Some Forecasters Really Better Than Others?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:76:y:1998:i:2:p:217-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.