IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On recursive estimation for hidden Markov models

Listed author(s):
  • Rydén, Tobias
Registered author(s):

    Hidden Markov models (HMMs) have during the last decade become a widespread tool for modelling sequences of dependent random variables. In this paper we consider a recursive estimator for HMMs based on the m-dimensional distribution of the process and show that this estimator converges to the set of stationary points of the corresponding Kullback-Leibler information. We also investigate averaging in this recursive scheme and show that conditional on convergence to the true parameter, and provided m is chosen large enough, the averaged estimator is close to optimal.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 66 (1997)
    Issue (Month): 1 (February)
    Pages: 79-96

    in new window

    Handle: RePEc:eee:spapps:v:66:y:1997:i:1:p:79-96
    Contact details of provider: Web page:

    Order Information: Postal: http://

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    2. Schwabe, R., 1986. "Strong representation of an adaptive stochastic approximation procedure," Stochastic Processes and their Applications, Elsevier, vol. 23(1), pages 115-130, October.
    3. Rainer Schwabe & Harro Walk, 1996. "On a stochastic approximation procedure based on averaging," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 44(1), pages 165-180, December.
    4. Ma, D.-J. & Makowski, A.M. & Shwartz, A., 1990. "Stochastic approximations for finite-state Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 35(1), pages 27-45, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:66:y:1997:i:1:p:79-96. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.