IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v185y2025ics0304414925000729.html
   My bibliography  Save this article

Asymptotics for irregularly observed long memory processes

Author

Listed:
  • Ould Haye, Mohamedou
  • Philippe, Anne

Abstract

We study the effect of observing a long-memory stationary process at irregular time points via a renewal process. We establish a sharp difference in the asymptotic behaviour of the self-normalized sample mean of the observed process depending on the renewal process. In particular, we show that if the renewal process has a moderate heavy-tail distribution, then the limit is a so-called Normal Variance Mixture (NVM) and we characterize the randomized variance part of the limiting NVM as an integral function of a Lévy stable motion. Otherwise, the normalized sample mean will be asymptotically normal.

Suggested Citation

  • Ould Haye, Mohamedou & Philippe, Anne, 2025. "Asymptotics for irregularly observed long memory processes," Stochastic Processes and their Applications, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:spapps:v:185:y:2025:i:c:s0304414925000729
    DOI: 10.1016/j.spa.2025.104631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925000729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
    2. Jean‐Marc Bardet & Pierre R. Bertrand, 2010. "A Non‐Parametric Estimator of the Spectral Density of a Continuous‐Time Gaussian Process Observed at Random Times," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 458-476, September.
    3. F. Comte, 1996. "Simulation And Estimation Of Long Memory Continuous Time Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 19-36, January.
    4. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
    5. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    6. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    7. Mohamedou Ould Haye & Anne Philippe & Caroline Robet, 2024. "Inference for continuous-time long memory randomly sampled processes," Statistical Papers, Springer, vol. 65(5), pages 3111-3134, July.
    8. Cremers, Heinz & Kadelka, Dieter, 1986. "On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in LEP," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 305-317, February.
    9. Chambers, Marcus J., 1996. "The Estimation of Continuous Parameter Long-Memory Time Series Models," Econometric Theory, Cambridge University Press, vol. 12(2), pages 374-390, June.
    10. Henghsiu Tsai & K. S. Chan, 2005. "Maximum likelihood estimation of linear continuous time long memory processes with discrete time data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 703-716, November.
    11. Hintz, Erik & Hofert, Marius & Lemieux, Christiane, 2021. "Normal variance mixtures: Distribution, density and parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
    2. Mohamedou Ould Haye & Anne Philippe & Caroline Robet, 2024. "Inference for continuous-time long memory randomly sampled processes," Statistical Papers, Springer, vol. 65(5), pages 3111-3134, July.
    3. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    4. Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
    5. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    6. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    7. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    8. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    9. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    10. Markus Bibinger & Jun Yu & Chen Zhang, 2025. "Modeling and Forecasting Realized Volatility with Multivariate Fractional Brownian Motion," Papers 2504.15985, arXiv.org.
    11. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    12. Susanne M. Schennach, 2018. "Long Memory via Networking," Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
    13. Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
    14. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    15. Leonenko, Nikolai N. & Sharapov, Michail M. & El-Bassiouny, Ahmed H., 2000. "On the exactness of normal approximation of LSE of regression coefficient of long-memory random fields," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 121-130, June.
    16. Jia Li & Peter C. B. Phillips & Shuping Shi & Jun Yu, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
    17. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Jan 2025.
    18. Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.
    19. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.
    20. Theodore Simos & Mike Tsionas, 2018. "Bayesian inference of the fractional Ornstein–Uhlenbeck process under a flow sampling scheme," Computational Statistics, Springer, vol. 33(4), pages 1687-1713, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:185:y:2025:i:c:s0304414925000729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.