IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v179y2025ics030441492400228x.html
   My bibliography  Save this article

An SPDE with Robin-type boundary for a system of elastically killed diffusions on the positive half-line

Author

Listed:
  • Hambly, Ben
  • Meier, Julian
  • Søjmark, Andreas

Abstract

We consider a system of particles undergoing correlated diffusion with elastic boundary conditions on the half-line in the limit as the number of particles goes to infinity. We establish existence and uniqueness for the limiting empirical measure valued process for the surviving particles, which is a weak form for an SPDE with a noisy Robin boundary condition satisfied by the particle density. We show that this density process has good L2-regularity properties in the interior of the domain but may exhibit singularities on the boundary at a dense set of times. We make connections to the corresponding absorbing and reflecting SPDEs as the elastic parameter varies.

Suggested Citation

  • Hambly, Ben & Meier, Julian & Søjmark, Andreas, 2025. "An SPDE with Robin-type boundary for a system of elastically killed diffusions on the positive half-line," Stochastic Processes and their Applications, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:spapps:v:179:y:2025:i:c:s030441492400228x
    DOI: 10.1016/j.spa.2024.104520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441492400228X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurtz, Thomas G. & Xiong, Jie, 1999. "Particle representations for a class of nonlinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 103-126, September.
    2. Psarakis, Stelios & Panaretos, John, 2001. "On Some Bivariate Extensions of the Folded Normal and the Folded-T Distributions," MPRA Paper 6383, University Library of Munich, Germany.
    3. Ahmad, F. & Hambly, B.M. & Ledger, S., 2018. "A stochastic partial differential equation model for the pricing of mortgage-backed securities," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3778-3806.
    4. Ben Hambly & Andreas Søjmark, 2019. "An SPDE model for systemic risk with endogenous contagion," Finance and Stochastics, Springer, vol. 23(3), pages 535-594, July.
    5. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    6. Michael B. Giles & Christoph Reisinger, 2012. "Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance," Papers 1204.1442, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Hambly & Nikolaos Kolliopoulos, 2019. "Stochastic PDEs for large portfolios with general mean-reverting volatility processes," Papers 1906.05898, arXiv.org, revised Mar 2024.
    2. Ben Hambly & Nikolaos Kolliopoulos, 2020. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Finance and Stochastics, Springer, vol. 24(3), pages 757-794, July.
    3. Ben Hambly & Nikolaos Kolliopoulos, 2018. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Papers 1811.08808, arXiv.org, revised Feb 2020.
    4. Burzoni, Matteo & Campi, Luciano, 2023. "Mean field games with absorption and common noise with a model of bank run," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 206-241.
    5. Amarjit Budhiraja & Michael Conroy, 2022. "Empirical Measure and Small Noise Asymptotics Under Large Deviation Scaling for Interacting Diffusions," Journal of Theoretical Probability, Springer, vol. 35(1), pages 295-349, March.
    6. Josselin Garnier & George Papanicolaou & Tzu-Wei Yang, 2015. "A risk analysis for a system stabilized by a central agent," Papers 1507.08333, arXiv.org, revised Aug 2015.
    7. Ahmad, F. & Hambly, B.M. & Ledger, S., 2018. "A stochastic partial differential equation model for the pricing of mortgage-backed securities," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3778-3806.
    8. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    9. Christa Cuchiero & Martin Larsson & Sara Svaluto-Ferro, 2018. "Probability measure-valued polynomial diffusions," Papers 1807.03229, arXiv.org.
    10. Agostino Capponi & Xu Sun & David D. Yao, 2020. "A Dynamic Network Model of Interbank Lending—Systemic Risk and Liquidity Provisioning," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1127-1152, August.
    11. Lijun Bo & Tongqing Li & Xiang Yu, 2021. "Centralized systemic risk control in the interbank system: Weak formulation and Gamma-convergence," Papers 2106.09978, arXiv.org, revised May 2022.
    12. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    13. Christa Cuchiero & Stefan Rigger & Sara Svaluto-Ferro, 2020. "Propagation of minimality in the supercooled Stefan problem," Papers 2010.03580, arXiv.org, revised Jun 2022.
    14. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    15. Kourtis, Apostolos, 2014. "On the distribution and estimation of trading costs," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 104-117.
    16. Zachary Feinstein & Andreas Søjmark, 2023. "Contagious McKean–Vlasov systems with heterogeneous impact and exposure," Finance and Stochastics, Springer, vol. 27(3), pages 663-711, July.
    17. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    18. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    19. Clini, Andrea, 2023. "Porous media equations with nonlinear gradient noise and Dirichlet boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 159(C), pages 428-498.
    20. Ben Hambly & Andreas Sojmark, 2018. "An SPDE Model for Systemic Risk with Endogenous Contagion," Papers 1801.10088, arXiv.org, revised Sep 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:179:y:2025:i:c:s030441492400228x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.