IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i10p2201-2230.html
   My bibliography  Save this article

Hybrid Monte Carlo on Hilbert spaces

Author

Listed:
  • Beskos, A.
  • Pinski, F.J.
  • Sanz-Serna, J.M.
  • Stuart, A.M.

Abstract

The Hybrid Monte Carlo (HMC) algorithm provides a framework for sampling from complex, high-dimensional target distributions. In contrast with standard Markov chain Monte Carlo (MCMC) algorithms, it generates nonlocal, nonsymmetric moves in the state space, alleviating random walk type behaviour for the simulated trajectories. However, similarly to algorithms based on random walk or Langevin proposals, the number of steps required to explore the target distribution typically grows with the dimension of the state space. We define a generalized HMC algorithm which overcomes this problem for target measures arising as finite-dimensional approximations of measures [pi] which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert space. The key idea is to construct an MCMC method which is well defined on the Hilbert space itself. We successively address the following issues in the infinite-dimensional setting of a Hilbert space: (i) construction of a probability measure [Pi] in an enlarged phase space having the target [pi] as a marginal, together with a Hamiltonian flow that preserves [Pi]; (ii) development of a suitable geometric numerical integrator for the Hamiltonian flow; and (iii) derivation of an accept/reject rule to ensure preservation of [Pi] when using the above numerical integrator instead of the actual Hamiltonian flow. Experiments are reported that compare the new algorithm with standard HMC and with a version of the Langevin MCMC method defined on a Hilbert space.

Suggested Citation

  • Beskos, A. & Pinski, F.J. & Sanz-Serna, J.M. & Stuart, A.M., 2011. "Hybrid Monte Carlo on Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2201-2230, October.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:10:p:2201-2230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911001396
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Byrne & Mark Girolami, 2013. "Geodesic Monte Carlo on Embedded Manifolds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 825-845, December.
    2. Cheng Zhang & Babak Shahbaba & Hongkai Zhao, 2017. "Precomputing strategy for Hamiltonian Monte Carlo method based on regularity in parameter space," Computational Statistics, Springer, vol. 32(1), pages 253-279, March.
    3. Beskos, Alexandros & Kalogeropoulos, Konstantinos & Pazos, Erik, 2013. "Advanced MCMC methods for sampling on diffusion pathspace," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1415-1453.
    4. Simon Byrne & Mark Girolami, 2014. "Rejoinder: Geodesic Monte Carlo on Embedded Manifolds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 19-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:10:p:2201-2230. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.